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Deep Dynamic Scene Deblurring for Unconstrained
Dual-Lens Cameras
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Abstract— Dual-lens (DL) cameras capture depth information,
and hence enable several important vision applications. Most
present-day DL cameras employ unconstrained settings in the two
views in order to support extended functionalities. But a natural
hindrance to their working is the ubiquitous motion blur encoun-
tered due to camera motion, object motion, or both. However,
there exists not a single work for the prospective unconstrained
DL cameras that addresses this problem (so called dynamic scene
deblurring). Due to the unconstrained settings, degradations in
the two views need not be the same, and consequently, naive
deblurring approaches produce inconsistent left-right views and
disrupt scene-consistent disparities. In this paper, we address this
problem using Deep Learning and make three important contri-
butions. First, we address the root cause of view-inconsistency in
standard deblurring architectures using a Coherent Fusion Mod-
ule. Second, we address an inherent problem in unconstrained
DL deblurring that disrupts scene-consistent disparities by intro-
ducing a memory-efficient Adaptive Scale-space Approach. This
signal processing formulation allows accommodation of different
image-scales in the same network without increasing the number
of parameters. Finally, we propose a module to address the
Space-variant and Image-dependent nature of dynamic scene
blur. We experimentally show that our proposed techniques have
substantial practical merit.

Index Terms— Unconstrained dual-lens camera, dynamic scene
deblurring, view-consistency, multi-scale, scale-space.

I. INTRODUCTION

MOTION blur is a prominent degradation in computer
vision. The challenging problem of blind motion

deblurring (BMD) deals with estimating a clean image from a
motion blurred observation, without any knowledge of scene
and camera motion. Since most computer vision works are
designed for blur-free images and blur derails most of these
tasks [5], [13], [28], BMD is a continuing research endeavour.
In practice, motion blur happens due to camera motion,
object motion, or both. This renders those BMD methods
that are restricted to handle only camera-motion induced blur,
ill-equipped for many practical scenarios [6], [16]. Conse-
quently, there arises a need to seamlessly tackle blur due to
camera motion and dynamic objects, so called dynamic scene
deblurring. The works [13], [22], [27], [37], [39] are some
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notable dynamic scene deblurring methods for monocular
cameras.

Apart from monocular cameras, stereo or dual-lens cameras
are also widely prevalent. In traditional dual-lens cameras,
typically the two cameras are identical, and they are con-
strained by the same camera settings and work in a synchro-
nized fashion. The works [18], [23], [34] deal with dynamic
scene deblurring in constrained dual-lens cameras. However in
modern cameras, there has been a growing trend in employ-
ing unconstrained dual-lens (DL) cameras, i.e., two cameras
with same or different focal lengths, sensor-resolutions, and
exposures [15]. This flexibility supports a plethora of applica-
tions, e.g., different focal lengths and resolutions are common
in today’s smartphones for both narrow and wide field-of-
view (FOV) functionalities; HDR imaging [1], [19], [26],
low-light photography [29], and stereoscopics [20] employ
different exposure times, whereas super-resolution [11], [31],
visual odometry [10], [14] and segmentation [24] employ
nearly-identical exposure times. More important, as in monoc-
ular cameras, motion blur is ubiquitous in DL cameras as well
[15], [34], [40]. Further, the BMD methods for monocular
and constrained DL are not applicable for unconstrained DL
cameras [15]. A further challenge stems from the narrow-FOV
popularized by smartphones, which amplifies the effect of
camera motion and object motion, thereby exacerbating the
blur. However, dynamic scene BMD for unconstrained DL
cameras is still an unexplored problem.

Due to the earlier prevalence of shared camera-settings in
traditional stereo cameras, most existing DL applications war-
rant image-pair with identical FOV and resolution. Similarly,
stereoscopic 3D driven by the emerging demand for AR/VR
(such as stereo super-resolution [11], [31], style transfer [2],
[7], inpainting [30], panorama [36], etc.), warrant the input DL
images to be view-consistent, i.e., the left-right view has to
have coherent features as perceived by human eyes [4]. More-
over, numerous important stereo applications, such as scene-
understanding, autonomous navigation and 3D reconstruction,
warrant scene-consistent disparities in the DL images. For a
dynamic scene BMD method for unconstrained DL cameras to
serve as a potential preprocessing stage for these kind of tasks,
in order to extend their scope to handle ubiquitous motion
blurred observations, it has to: (I) produce view-consistent
deblurred image-pair and (II) ensure scene-consistent dispari-
ties in the deblurred images.

However, employing standard deblurring methods for
unconstrained DL cameras seldom produce the desirable
outcome. Motion blur and low-resolutions result in loss
of high-frequency information or fine details of images
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Fig. 1. Illustration of information loss: (a) Clean image, (b) Information loss
due to motion blur [40], and (c) loss due to blur and resolution. (X 1

2 ). Note
the difference in degradations in (b) and (c).

(as illustrated in Fig. 1). This loss happens due to the
inherent image filtering process in motion blur [32] and
down-sampling [17]. Because of different exposures and res-
olutions in unconstrained DL set-up, the difference in the
level of information-loss in the two images can be higher
( [1], [15], [19], [26], [29]) (unlike the constrained DL case
where this difference is less [40]), i.e., image in one view can
have more information-loss as compared to the other view
(e.g., see Fig. 4(1-2)(a-b)). Consequently, information that
can be restored by a deblurring method from the two views
need not be identical, thereby leading to view-inconsistency.
Second, it is shown in [15] that state-of-the-art deblurring
methods employed for unconstrained DL-BMD can easily
disrupt scene-consistent disparities.

For unconstrained DL cameras, there exists only one BMD
method [15]; however, it restricts itself to only camera-motion
induced blur. It reveals an inherent ill-posedness in uncon-
strained DL-BMD that disrupts scene-consistent disparities,
which it addresses using a prior on camera motion. How-
ever, that prior is not effective when dynamic objects are
present. Also, no attempts are made in [15] to address the
problem of view-consistency. Further, it warrants an iterative
high-dimensional optimization and hence is computationally
expensive as compared to deep learning methods.

On the other hand for constrained DL-cameras, wherein
both cameras share the same focal length, resolution and
exposure time (with full-overlap), there exist several dynamic
scene deblurring methods. These methods can be broadly
categorized into two classes: Model-based optimization class
and Model-agnostic deep learning class.

The model-based optimization class proceeds via a complex
pipeline of segmenting different dynamic objects, estimating
their corresponding motions, and deblurring and stitching
different segments while suppressing possible artifacts in
seams [18], [23], [34]. Due to the presence of large num-
ber of unknowns, such as segmentation masks of dynamic
objects, their depths, relative motions, etc., these methods
either warrant more information or restrict themselves to
limited scenarios. For example, [18], [23] warrant multiple
stereo image-pairs, whereas [34] restricts itself to motion blur
primarily caused via inplane camera and object motions, and
requires individual objects to have uniform depth. Further, due
to the complex pipeline and high-dimensional optimizations
involved, methods belonging to this class incur heavy compu-
tational cost.

The second class of model-agnostic methods greatly
addresses the limitations of the former class, as it learns
from unrestricted data an end-to-end mapping, that does not
involve complex pipelines and optimizations while deblurring.

However, this class is an emerging area for DL-BMD, with
only one existing method [40]. As the method of [40] restricts
itself to constrained set-up, the questions of ill-posedness and
view-inconsistency do not arise [40]; but this is not the case
for unconstrained DL-cameras wherein two cameras can have
different configurations. Among other closely related works,
a recent work for constrained DL [35] restricts itself to space-
invariant Gaussian blur. Yet another issue in dynamic scene
deblurring is due to its space-variant and image-dependent
nature of blur [38], which is also not at all explored in the
only-existing DL dynamic scene deblurring method [40].

For the first time in the literature, this paper explores
the problem of dynamic scene deblurring in today’s ubiq-
uitous unconstrained DL configuration. Our work belongs
to the less-explored model-agnostic deep learning class.
We address the three main problems in dynamic scene
deblurring for unconstrained DL cameras, namely, enforcing
view-consistency, ensuring scene-consistent disparities, while
addressing space-variant and image-dependent nature of blur,
all in an interpretable and explainable fashion. In summary:
(1). For view-consistency problem, we introduce Coherent
Fusion Module with interpretable costs. Specifically, it works
by fusing the unconstrained feature-pair to a single entity,
which then sources a constrained feature-pair while retain-
ing useful complementary information. (2). We show that
scene-consistent disparities in the deblurred image-pair can
be enforced using an Adaptive Scale-space approach. Though
adaptive scale-space means directly changing the respective
parameters in model-based optimization methods, there is
no analogous flexibility in deep networks, hitherto, typically
owing to their perceivance as a black-box. This we address
using signal processing principles. (3). To address the space-
variant, image-dependent nature (SvId) of blur, we extend
the widely-used atrous spatial pyramid pooling (ASPP) [3].
Basically, it enables a neural network to produce a ‘variety’ of
SvId receptive fields and filter-weights. Our main contributions
can be summarized as:

• As a first, we address the pertinent problem of view-
inconsistency inherent in unconstrained DL deblurring,
that forbids most DL applications. To this end, we pro-
pose an interpretable Coherent Fusion Module.

• Our work reveals an inherent issue that disrupts
scene-consistent depth in generic deep learning based
DL dynamic scene deblurring. To address this,
we introduce a memory-efficient Adaptive Scale-space
Approach.

• To address the space-variant and image-dependent
nature of dynamic scene blur, we instil the SvId property
in a widely-applicable deep learning module, namely
atrous spatial pyramid pooling [3].

• Our proposed approach based on the above techniques
achieves state-of-the-art dynamic scene BMD results for
the popular unconstrained DL set-up, and we contribute
the first such dataset to aid further exploration.

Rest of this paper is organized as follows: Section II brings out
the reason for view-inconsistency in generic DL network, and
introduces Coherent Fusion Module to address it. Section III
proposes a memory-efficient Adaptive Scale-space approach to
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enforce scene-consistent disparities in deblurred image-pair.
Section IV discusses our SvId-ASPP in order to deal with
dynamic scene blur. Section V provides various analysis and
extensive comparisons, and we conclude in Section VI.

II. VIEW-CONSISTENCY IN UNCONSTRAINED DL-BMD

As compared to the constrained situation, the unconstrained
scenario suffers from a higher level of difference in the
information loss between the two views (due to non-uniform
image-resolution and exposure). Consequently, the application
of standard DL-BMD methods to this case will have more
influence from such differences, leading to view-inconsistent
outputs as revealed in our experimental results in Sec. V-C.
To address this problem, we resort to a Deep Learning based
solution. In order to motivate our solution, first we analyse the
inadequacy of the only-existing deep learning based DL-BMD
(albeit developed for constrained set-up) [40]. We have consid-
ered the architecture of [40] because a similar one is employed
for diverse DL applications, such as style transfer [2], [7] and
super-resolution [11], [31]. We first briefly review this generic
DL architecture. As shown in Fig. 2, it consists of symmetrical
networks for left-and right-view images, with both networks
sharing identical weights (in order to not scale-up trainable
parameters as compared to that of single-lens methods [40]).
Here, the mapping from blurred images {BL, BR} to deblurred
images {̂LL , L̂R} can be given as

L̂L = T
(
BL

�, f L
�, f wd , W � f L

�,enc + W � f R→L
�,enc , dL)

,

L̂R = T
(
BR

�′ , f R
�′, f wd , W′ � f R

�′,enc + W′ � f L→R
�′,enc, dR)

,

(1)

where supersripts L/R denotes the left/right view, sets � and
�′ captures the resolutions and exposures of the left-right
views, and f f wd are intermediate-features of encoder which
are fed-forward to decoder and fenc is encoder-output. Bilinear
mask W (where W = 1 − W) combines left-view and
right-view encoder-outputs after registration (denoted by ‘→’)
for view-aggregation, and {dL, dR} are depth-features (which
are outputs of a sub-network, whose inputs are disparity and
intermediate features of disparity estimation network [40]).

The generic DL architecture in Fig. 2 (as employed in
state-of-the-art DL-BMD network [40]) has identical mappings
in the left- and right-view network. Therefore in unconstrained
scenarios, there are differences in terms of resolution and/or
exposure, and that leads to a higher difference in extracted
features by the two networks which in turn leads to view-
inconsistency. This problem is minimal for a constrained DL
scenario ( [40]), since the difference in extracted features will
be much lesser. A similar reasoning of view-inconsistency is
valid for single-image deep learning methods as well (the
main difference here is that the left- and right-view net-
works, though can be parallelized as in Fig. 2, are decoupled,
i.e., W = W′ = 1 in Eq. (1)).

A. Coherent Fusion for View-Consistency

View-inconsistency in the generic DL deblurring architec-
ture (Fig. 2) occurs for the unconstrained case because there
exist no avenues to reduce the difference in the extracted

Fig. 2. Architecture of Generic DL network: For the left- and right-views
(L-R), it consists of two symmetric networks with identical encoder (Enc),
feature mapping (FM) and decoder (Dec), which produce view-consistent
outputs for balanced L-R signals. However, when these identical networks
process L-R imbalanced signal (due to unconstrained DL-setup), the outputs
will be view-inconsistent.

features by the two networks. Therefore, one way to address
the problem of view-consistency is to ensure the differ-
ence in the extracted features by the two networks to be
minimal ‘irrespective’ of constrained or unconstrained case
(� �= �′ or � = �′). A careful inspection of the generic
DL architecture in Fig. 2 reveals that the view-inconsistency
stems from the node-pair {A, B}, where it creates imbalance
in the encoder inputs and hence all feed-forward inputs to
the decoder and network output (through f f wd in Eq. (1)),
which in turn creates imbalance in the decoder inputs
(i.e., node-pair {C, D}).

To this end, we introduce a coherent fusion module with
two self-supervision costs in the two node-pairs {A,B} and
{C,D}, which enforce the following conditions: (A) The nature
of output signals in the left-right views in those node-pairs
are identical; (B) Both the outputs exhibit the properties of
the input with higher information in those node-pairs. The
coherent fusion at {C,D} supplements the view-aggregation of
encoded features that is standard in DL networks (Fig. 2) [2],
[7], [11], [31], [40], and also, enforces an additional reinforce-
ment to balance the decoder inputs, which leads to a marginal
improvement in view-consistency (Sec. V-B.2). Based on
empirical observation (Sec. V-C), we select the high-resolution
image as the reference (say, the right-view) since reducing
resolutions leads to irrecoverable information-loss due to
anti-aliasing involved. We introduce a center-view which is
equidistant from the two views so that both left-right views
can symmetrically map to it, and vice-versa. Considering the
left-right view input to the module as {xL, xR}, the coherent
fusion module maps {xL, xR} to left-right view output {yL, yR}
as

ys = W � xR→C + W � xL→C ; (2)

yL = WL � ys
C→L + WL � xL ; (3)

yR = WR � ys
C→R + WR � xR, (4)

where xR→C registers the right-view input xR to the center-
view, � is the Kronecker product, and {W, WL , WR}
are image-dependent bilinear masks produced by a simple
mask-generation network (as in [2], [7], [40]), i.e., W is
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Fig. 3. (a) Coherent Fusion Module is placed in node-pairs {A, B} and {C, D}
in the generic DL architecture (Fig. 2) to produce a balanced, yet high-feature
output-pair in those nodes (from unbalanced inputs). (b-f) Visualization of
registration at the center-view. (Note that Figs. (b-c) show input left-view and
right-view images).

a function of the error between xL→C and xR→C , where
0 � W � 1, W+W = 1. For registration, we employ the dis-
parity estimation method of the state-of-the-art DL deblurring
network [40] and use the disparities to warp from one-view
to the other-view (as in [40]). A similar approach is followed
in other DL works as well [2], [7]. The main difference of
our approach from [40] is that, [40] employs a warping from
left/right-view to (or from) right/left-view, whereas we require
warping from left/right view to (or from) the center-view and
hence employ disparities multiplied by half. This is illustrated
in Fig. 3(b-d) using xL→C , xR→C , and ys. In words, Eq. (2)
fuses the appropriately warped left- and right-view input
features to form a single center-view feature ys (using W);
further, Eqs. (3)-(4) produce the output left-view (and right-
view) features by merging the symmetrically-warped center-
view feature and the input left-view (and right-view) features
using WL (and WR).

Also, the two self-supervision costs are

L L R = ‖yL→R − yR‖2
2 and L R R = ‖yR − xR‖2

2. (5)

The cost L L R enforces the left- and right-view outputs to be
closer to each other (enforcing Condition A), whereas the cost
L R R enforces right-view output feature to have higher infor-
mation as that of the right-view input (enforcing condition B).
(See Remark 1 in the supplementary for a justification.)

We now attempt to illustrate the working of coherent fusion
module using examples. As shown in Fig. 3, the first part of the
module acts as an information sink, which accumulates infor-
mation from the (possibly inconsistent) input left-right views
to form a single center-view information source. Note that the
information taken from different views are image-dependent
(through mask W). This is illustrated using an example

in Fig. 4, where the overall high magnitudes of mask W
reveal that the input-view having relatively rich information
(i.e., the right-view) predominantly sources the information-
sink, with exceptions at occlusions or specularities where
information is present only in the other view (e.g., observe the
overall high-magnitude of mask of the right-view image which
contains more information, except at the regions of coat behind
the sailor in Fig. 4-1(a-b) or the difference in specularity
behind the pillar or in the bright-window in Fig. 4-2(a-b),
where right-view image does not have sufficient information).
Finally, the center-view sources the output left-right views
symmetrically, i.e., two signals with identical nature, with a
provision to fill the occlusion in left-right views which is not
present in the center-view (but present in the input left-right
view) through masks {WL, WR}. Figures 4(d-e) provide the
difference between input and output signals, which reveals a
higher information flow in the left-view (as desired).

III. CONSISTENT DEPTH IN UNCONSTRAINED DL-BMD

Scene-consistent depth in DL images is important for
diverse DL applications. In a typical stereo set-up, it requires
horizontal disparities of image-features to be consis-
tent with scene-geometry and vertical disparities to be
negligible [8], [33]. Though the generic DL network with
coherent fusion (in Sec. II) enforces view-consistency, it need
not encode scene-consistent disparities in deblurred images.
For the case of dynamic scenes, in general, a clean DL
image-pair with scene-consistent depth is obtained when both
images are captured at the same time-instant; otherwise, world-
position(s) of dynamic object(s) in one-view need not be the
same in the other-view which disrupts the scene-consistency.
Next, we show that standard deep learning based BMD meth-
ods directly applied to unconstrained DL results in a similar
issue.

A motion blurred image encodes a video sequence over its
exposure time [12]; in particular, the blurred image is formed
by the summation of clean frames of that video sequence [32].
Considering an unconstrained case where exposures need not
be identical or fully-overlapping ( [1], [19], [20], [29]), blurred
images {BL , BR} in the left-right views is given as [15]

BL = 1

tL

∫ t L

0
LL

t dt, BR = 1

t R − t0

∫ t R

t0
LR

t dt, (6)

where {LL
t , LR

t } is the clean DL image-pair obtained if, over
the exposure times, the camera and scene remain at their poses
at time instant t , and [0, t L ] and [t0, t R ] are respectively the
exposure times in the left-right views (see Fig. 5(a)). Note that
the constrained DL setting is a special case of Eq. (6) with
t0 = 0 and t R = t L . Standard deep learning based deblurring
methods works by learning a mapping from a blurred input
to a clean image-pair sampled from the middle of exposure
time (i.e., the centroid pivot) [27], [40]. This choice of pivot
is extensively followed because for other pivots, ill-posedness
exists in learning as reversing the arrow of time of the video
sequence is plausible and creates the same blurred image
(Eq. (6)), but now warrants mapping to a different clean image,
i.e., one-to-many mapping [12]. This standard pivot is apt for
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Fig. 4. Visualization of Coherent Fusion Module: (1-2) Unconstrained DL blurred images with resolution-ratio 1:2, and exposure-ratios 3:4 and 1:1, respectively
(Note that input left-view/low-resolution image is shown resized to that of right-view to highlight the uneven degradations). Overall high magnitude of mask W
reveals that the view with rich information predominantly sources the information-sink, with exceptions at occlusions or specularities where information is
present only at the other view. In Figs. 1-2(b), observe the relatively rich information in right-view inputs where W has high magnitudes overall (Figs. 1-2(c)).
Also, compare the coat behind the sailor in Figs. 1(a-b) or the specularity-difference in the pillar or bright-window in Figs. 2(a-b) where only the left-view
contains the information and hence W magnitudes in those regions are low (Figs. 1-2(c)). Figures. 1-2(d-e) show the difference between x L and yL as well
as x R and y R , which reveal a higher information flow in the left-view/low-resolution image (which has both blur and down-sampling) as compared to the
right-view image (which has only blur). This in turn boost the deblurring performance of the left-view, unlike other methods (Fig. 9).

Fig. 5. Scene-consistent Depth: (a) As centroids of blurred images need not align in unconstrained case, standard DL-BMD produces scene-inconsistent
disparities. (b) If a convolution filter is optimized for a particular signal, then its decimated version need not produce similar features, unless the signal is
transformed to the original scale. (c) In figure, [40] + Eq. (10)/(11) denotes the original network of [40], but with introduction of Eq. (10)/(11) according to
scales (L/R denotes Left/Right view). As compared to directly employing [40] to deblur different image-scales ( [40] + Eq. (10)), our transformation Eq. (11)
in [40], albeit a simple modification, greatly improves its performance-decay over scales. Figure also plots the performance of our network on unconstrained
DL (U-DL) dataset (Case 4), which is trained using a multi-scale loss using Eq. (11). Note that our training strategy further improves the performance-decay,
and the performance is sensitive to Eq. (11).

constrained DL setting, as it automatically results in a clean
image-pair captured (or pivoted) at the same time-instant,
i.e., {LL

t ′ , LR
t ′′ } where t ′ = t ′′(= t R/2 = t L/2) [40]. However,

for unconstrained case, it causes serious scene inconsistency
as the pivot t ′ deviates from t ′′ (as illustrated in Fig. 5(a)).
Further, even if the pivots are chosen as some Mth and
N th fraction of exposure times, the deblurred image-pair (in
general) will still exhibit scene inconsistency, with severity
increasing with the separation between the pivots

(
M · t R and

N ·(t L −t0)
)
. Hence, for an unconstrained set-up where timings

{t R, t0, t L } freely vary, there does not exist a unique choice
of pivots which produces scene-consistent disparities.

A. Adaptive Scale-Space for Scene-Consistent Depth

Scene-inconsistent disparities occur in dynamic scene
unconstrained DL-BMD due to non-intersecting pivots. There-
fore, a method to address this problem in dynamic scene

DL-BMD has to establish a mutual agreement between the left-
and right-view images to arrive at an intersecting pivot (as
shown in Fig. 5(a)). Since single-image networks for DL-BMD
operate by independently reusing the same network for the two
views [15], [40], a mutual agreement cannot be established
between the views. Even though the generic DL architecture
promotes a signal-flow between the views, i.e., by combining
registered encoder-output of one view with that of the other
view (in node-pair {C, D} of Fig. 2), which is indispens-
able for coherently adding the two encoder-outputs [2], [7],
[40], this registration hinders the control on pivots. Further,
the prior developed in the DL-BMD method [15] to address
scene-inconsistent depth is inadequate for dynamic scenes
(please see our Supplementary (Sec. S2a) for a justification).

We first provide an outline of our solution. We show
that if DL-BMD is performed in lower scales (i.e., on dec-
imated DL blurred images), the problem of depth discrepancy
becomes less severe. This motivates our adaptive scale-space
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approach for unconstrained DL deblurring. For a given DL
blur input, we start deblurring from an appropriate lower scale
where the depth discrepancy is negligible in order to produce
scene-consistent results in that scale, which then progressively
correct depth discrepancies in subsequent higher scales till the
fine scale is reached. By ‘appropriate lower scale’ we mean
that one network-level is shown effective for a constrained
DL case [40], whereas for an unconstrained case, as depth
discrepancy becomes higher more network-levels are required.
In the following, we elaborate this approach in detail.

Considering the standard centroid pivot [12], [27], [40],
we attempt to quantify the disparity error in unconstrained
DL-BMD. Let the world coordinate of a scene-point at
time-instant t ′ is X; then its corresponding image-coordinates
at the same pivot t ′ in the left- and right-views are respectively
{KL

(X
Z

)
, KR

(X+lb
Z

)}, where KL and KR are the corresponding
intrinsic camera matrices, lb is the stereo baseline, and Z is the
scene-depth [15]. The matrix K is of the form diag( f, f, 1),
where f is the focal length in pixels which is proportional to
the number of image rows or columns [15], [32]. Note that
this case produces zero disparity error as the right-view sees
the same world-coordinate as the left-view, displaced by the
baseline (as in constrained DL-BMD).

Next, suppose that the scene-point X has undergone a
pose-change at time-instant t ′′, which is modelled by rotation
and translation R and t (i.e., RX + t, with corresponding
depth Z ′). Assume that the left and right-views have pivots
at {t ′, t ′′} (as shown in Fig. 5(a)). In this case, corresponding
image-coordinates become {KL

(X
Z

)
, KR

(RX+t+lb
Z ′

)}. Clearly,
the latter case exhibits a scene-inconsistent offset in the
right-view as compared to the previous case, which is given
as

�xR = KR
(

X + lb
Z

− RX + t + lb
Z ′

)
, (7)

where �xR is the image-coordinate discrepancy which con-
tributes to scene-inconsistent depth. Now consider that we
decimate the blurred image-pair by a factor of D(> 1),
i.e., image resolutions are scaled-down by D and hence the
focal lengths (in pixels) will be scaled by 1/D [8], [32].
Therefore the resultant �xR in Eq. (7) becomes

�xR
D = D�xR, where D = diag

{
1

D
,

1

D
, 1

}
. (8)

An important insight from Eqs. (7)-(8) is that image-
coordinate discrepancies get scaled down in accordance with
decimation factors. This serves the basis for our adaptive
scale-space approach (Fig. 5(b)). First, we judiciously select a
decimation factor so that the disparity error is very small [8],
[9]. Next, we consider the coherent deblurred image-pair
from the selected scale as the reference to centroid-align
the binocularly inconsistent blurred image-pair in the higher
scale (via registration), which similarly produces a coherent
deblurred image-pair. This process is repeated till the fine-
scale. Note that our registration approach is similar to the
video deblurring method [25] where a blurred frame is used
as the reference to centroid-align its neighbouring blurred
frames, which together produce a coherent deblurred frame.

Further, employing deblurred image from a coarse scale as the
reference for higher scale is standard practice in conventional
deblurring methods [15], [32].

B. Memory-Efficient Adaptive Scale-Space Learning

However, existing deep learning based scale-space approach
( [6], [16], [27]) in this regard has several limitations. First,
as it is typically designed for a pre-determined network-
levels (exactly three) it imposes an upper limit on allowable
depth discrepancies, and hence ineffective for a large class
of unconstrained DL inputs. Second, yet simply increasing
the network-levels is not desirable as it calls for independent
network-weights for different image-scales which escalates the
memory requirement [6]. Third, as this approach uses the
same network-levels irrespective of constrained and various
unconstrained cases, it increases the computational cost (with
respect to both FLOPs and processing time); to this end,
we devise a training/testing strategy in Sec. V-A which appro-
priately selects the lower scale depending on the input case.
Here, we address the first two limitations using signal process-
ing principles, where we show how to optimally convert a
fine-scale network to a multi-scale network by reusing the
same weights, thereby allowing desired number of multi-levels
while not escalating the memory requirement.

Assume that our DL-BMD network is optimally trained for
the fine-scale. Since the coherent fusion (Sec. II-A) creates
symmetric networks for the two views, the inference derived
for a particular view is valid for the other as well. In frequency
domain, the overall network-mapping for a view is given as

Y(ω) = X(ω) + T
(
X(ω)

)
, (9)

where Y is the output of the network and X is the respective
output of the first coherent-fusion module (after node-pair
{A, B} in Fig. 2), and T (·) is the mapping of encoder-decoder
network which involves a series of convolutions and other
non-linear operations. Next, consider that the network opti-
mized for the fine-scale (Eq. (9)) is directly employed for
a lower image-scale (D > 1). For decimated input images,
the costs of the first coherent fusion module (Eq. 5) enforces its
output as a decimated version of its fine-scale output (X(ω)).
Denoting decimation by ↓ D, the network-mapping becomes

Y′
D(ω) = X(ω)↓D + T

(
X(ω)↓D

)
, (10)

We claim (as in [6]) that considering the fine-scale net-
work as a black-box for other lower-scales (i.e., Eq. (10) is
not optimal as it maps to complimentary features. However,
the following network-mapping addresses this limitation:

YD(ω) =
(

X(ω)↓D↑D + T
(
X(ω)↓D↑D

))
↓D

, (11)

where ↑ D denotes interpolation. We assume that anti-aliasing
and anti-imaging filters in decimation and interpolation [17]
are ideal, but our training procedure discussed at the end of
this section relaxes this. In general, X(ω)↓D↑D �= X(ω).

Remark 2: Individual functions of DL-BMD network, such
as convolution filters, bias, ReLU, decimation/interpolation,
etc., optimized for fine-scale is applicable to lower scales
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under the transformation of Eq. (11) (as compared to Eq, (10)).
(Please see our Supplementary for a detailed justification.)
We attempt to provide some intuitions using convolution.
As compared to Eq. (10), basically Eq. (11) interpolates the
network-input before feeding to the network, and finally dec-
imates the network-output. In a scale-space network, the out-
put of lower-scale network should be the decimated version
of the fine-scale network-output [6], [15], [16], [27], [32].
This implies that there exists analogous frequency features
in lower-scale network-output as that of fine-scale network-
output (but scaled in frequency domain) [17]. As shown
in Fig. 5(b1), suppose that the transformation T (·) at a
fine-scale (in Eq. (9)) extract/map features in a particular
frequency band (desired features), whereas suppresses features
in the remaining frequency band (undesired features). Then to
leverage the same transformation T (·) for lower-scales and
yet retain those desired features (as required in a scale-space
network), the domain of the desired features for lower scales
should be identical to that of fine-scale. However, decimation
of inputs in lower-scales (as followed in Eq. (11)) alters the
domain of frequency features by expanding the frequency
spectrum, and hence it extract/map complementary features
instead of desired features (Fig. 5(b2)). To this end, Eq. (11)
initially interpolates the decimated inputs in lower scales
in order to make the domain of desired features identical
for all scales (Fig. 5(b3)). Finally, Eq. (11) decimates the
network-output which scales down the discrepancies in accor-
dance with Eq. (8).

We now experimentally validate Remark 2. In line with
our assumption that the network T (·) is optimally trained for
the fine-scale, we considered the publicly-available DL-BMD
network [40] (without modifying its weights) to underscore
the importance of Eq. (11) over Eq. (10). We evaluate the
state-of-the-art BMD [40] for different image-scales over its
dataset (in Fig. 5(c): [40] + Eq. (10)). Clearly, the performance
drastically drops with lower scales (validating the ineffective-
ness of Eq. (10)). Next we introduce our transformation in
Eq. (11) to [40] (in Fig. 5(c): [40] + Eq. (11)). Though
a simple modification, our proposed approach significantly
improves the earlier performance-decay of [40](Fig. 5(c)). The
prevailing slight decay of performance can be possibly due to
our assumption of ideal anti-aliasing and anti-imaging filter.
We next discuss a training strategy we employed in our net-
work to further improve the performance-decay. Specifically,
a network trained only for the fine-scale need not optimize the
filters to perform ideal anti-aliasing and anti-imaging. To this
end, we train our network in a scale-space manner by deriving
the lower-scale networks using Eq. (11) with tied network-
weights, and using BMD costs averaged over all image-scales.
Figure 5(c) plots the performance of our fine-scale network
(ours + Eq. (11)) for different image-scales, which clearly
reveals a noticeable improvement in performance-decay. This
is because our training strategy demands the fine-scale network
to realize effective anti-aliasing and anti-imaging through
trainable filters, in order to optimize the performances in lower
scales too (via the joint-cost). Also, note the higher sensitivity
of the above network when we ablate Eq. (11) (in Fig. 5(c):
ours + Eq. (10)).

IV. IMAGE-DEPENDENT, SPACE-VARIANT DEBLURRING

In this section, we focus on yet another issue that stems from
directly employing the network-modules of the state-of-the-art
DL deblurring method [40] with coherent-fusion (Sec. II-A)
and adaptive scale-space (Sec. III-A). As dynamic scene blur is
typically space-variant and image-dependent [38], an effective
dynamic-scene deblurring network warrants a mapping that
varies with spatial locations (with varying receptive fields),
and that adaptively varies with different blurred images [21],
[38]. Intuitively, consider a scenario of static camera, and two
dynamic objects at different depths moving with the same
velocity. Here, the static background exhibits no motion blur,
whereas the nearer object exhibits more blur than the farther
one (due to parallax [40]). Therefore, an effective deblurring
network warrants an identity mapping for the background and
non-identity mapping for the dynamic objects, but with a
relatively larger receptive field for the nearer object. Also,
positions of those dynamic objects can vary for different
images, and hence the mappings need to be image-dependent.
However, the filters of a generic CNN (as in [40]) are spatially
invariant (with spatially-uniform receptive field), and are inde-
pendent over images [21], [38]. Therefore, the only-existing
DL deblurring network [40] does not admit a space-variant
image-dependent mapping.

As discussed in [40], one key component that leads to its
good performance improvement is the context module (FM
in Fig. 2), which is a slightly modified version of atrous spatial
pyramid pooling (ASPP) [3]. This is because the ASPP offers
a good trade-off between accurate localization (small receptive
field) and context assimilation (large receptive field). Note that
ASPP has also been adopted for a broader set of tasks, such
as semantic segmentation, object detection, visual question
answering, and optical flow; however it does not support SvId
mapping. Owing to the presence of both small and large
receptive fields in ASPP, we extend the ASPP module to instil
the SvId property in our deblurring network.

First we briefly discuss about the ASPP module [3]. The
ASPP probes an input with filters at multiple sampling rates
and receptive fields. This is efficiently implemented using
multiple parallel atrous convolutional layers with spatially
small filters (3×3) but with different sampling rates, i.e., each
filter is associated with a rate r ≥ 1, which introduces r − 1
zeros between consecutive filter values, thereby effectively
enlarging the kernel size without increasing the number of
parameters or the amount of computation. Mathematically,
the mapping of an input x in an ASPP module is given as

y = x ∗ (ke1 + ke2 + · · · + kep), (12)

where kei is the filter at i th branch with sampling rates ei such
that e1 = 1 and ep > · · · > e2 > e1. Clearly, even though
the individual filters kei possess diverse receptive fields, there
exists only one resultant filter realization in Eq. (12) with
the receptive field as that of kep . Also, this filter realization
is identical in all spatial coordinates and is irrespective of
input. Therefore, the ASPP module [3] cannot admit an SvId
mapping, which is desirable for dynamic scene BMD.

Next, we propose a simple but effective modification to
ASPP to enable the SvId property. As shown in Fig. 6,
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Fig. 6. Space-variant, image-dependent (SvId) atrous spatial pyramid
pooling (ASPP): The ASPP [3] produces only one resultant filter (RF) with
receptive field as that of the constituent filter with maximum field-of-view
(in Fig., RF in the far-right). As this filter realization is same for all spatial
coordinates irrespective of input, it does not admit SvId property. SvId-ASPP
has the freedom to produce numerous RFs with receptive field as that of
any constituent filter through SvId linear combinations of filtered outputs in
individual branches.

we introduce in each parallel branch of ASPP a space-variant,
input-dependent bilinear mask, which modifies Eq. (12) as

y = (x ∗ k′
e1) � We1 + (x ∗ k′

e2) � We2 + . . .

+ (x ∗ k′
ep) � Wep (13)

where k′
ei is the filter at i th branch and Wei , 1 ≤ i ≤

p are learnt non-negative SvId masks which sum to unity
(0 � Wei � 1 and

∑p
i=1 Wei (m, n) = 1). Taking into con-

sideration some desired properties for dynamic scene deblur-
ring, we slightly modify the SvId-ASPP as follows. First,
inverse filters for deblurring may require a very large receptive
fields [21], [38], for which we cascade multiple stages (exactly
three) of the given module. Second, as discussed previously,
deblurring may also require unity receptive field for identity
mapping, for which we consider the identity mapping as the
first branch of each stage (instead of standard 3 × 3 filters in
ASPP).

Remark 3: Our ASPP (Eq. (13)) admits SvId mapping
with diverse receptive fields wherein each receptive field
(other than 1 – the identity mapping) admits numerous filter
realizations.
(Please refer to the Supplementary for a proof.) Intuitively,
Eq. (13) through SvId masks Wei realize numerous resultant
filters which are linear combinations of constituent filters k′

ei

of diverse receptive fields (see Fig. 6), independently in dif-
ferent spatial-coordinates (all of which are image-dependent).

The SvId masks are produced by a mask-generating net-
work similar to the one employed for coherent-fusion, i.e., a
cascade of 3×3 convolution layer, residual block, and another
convolution layer (following [40]). The main difference is that
we employ soft-max layer at the end (instead of sigmoid) as it
has to produce multiple masks, each for individual branches,
in contrast with a single mask in coherent fusion (please
see our supplementary for more details). Figure 7 provides
final SvId masks corresponding to individual branches, which
reveals that the regions with large blurs (which typically

happens at image edges or textured area) tend to have the
large mask values for the branch with the large receptive fields
(as desired [38]). This is in contrast with normal ASPP as used
in DL-BMD method [40] where there exists no SvId masks;
in other words, corresponding ASPP masks with respect to
Figs. (b-e) in [40] are uniform irrespective of spatial regions
and images (and hence does not possess SvId property).

V. EXPERIMENTS

A. Implementation Details

To introduce our proposed techniques, we followed the
generic DL-BMD network (Fig. 2, [40]), i.e., three stages each
for encoder and decoder, and apart from our coherent fusion
loss (Eq. (5)), we considered the MSE and perceptual losses.
Our SvId ASPP consists of three stages, with sampling rates
{1, 3, 5, 7}, {1, 4, 6, 8}, and {1, 2, 3, 4}. Since there exist no
datasets for unconstrained DL dynamic scene blur, we con-
tribute one with seven diverse exposure cases (of Fig. 5(a)),
viz. 1 : 3, 4 : 3, 3 : 5, 3 : 1, 3 : 4, 5 : 3, & 1 : 1.
Following [15], exposure-overlap is randomly sampled from
10-100% with resolution-ratio 1:2. Our dataset is generated
using the constrained DL blur dataset of DAVANET [40] and
adapts it to the case of multi-exposure acquisition in dual-lens
cameras (please refer to our Supplementary for the details on
the dataset generation (Sec. S2c), data distribution (Table S2),
network architecture (Fig. S2) and parameters (Sec. S2b)).

We optimize the computational cost as follows. We classify
our training/testing dataset according to the optimal number
of network levels each sample requires. For this, we find
the registration error between the left- and right-view input
images (following [25]). The ninety-quartile of the vertical
displacement error (in pixels) is considered as the estimate of
discrepancy, which is empirically selected for good classifi-
cation accuracy. We do not consider horizontal displacement
error because it can be primarily due to stereo parallax. Then
an optimal decimation scale is chosen such that it reduces the
maximum discrepancy of those samples within one pixel. For
training, we confine all images in a batch to have a particular
number of levels, thereby allotting optimal multi-scale network
for each batch (which is derived from the single-scale network
following Sec. III-B). For multi-scale case, weights in each
scale are shared (Sec. III-B), and hence are updated together.
For quantitative evaluation, we consider the mean absolute
error (MAE) for disparity (lower values are better), and for
deblurring, PSNR and SSIM in the view with relatively more
degradation and respective offsets in the other view. A higher
PSNR with small offsets implies good view-consistency.

B. Analysis and Discussions

1) Sensitivity to Resolution-Ratios and Noise: We analyse
the performance of our network for different resolution-ratios,
viz. 1:1 to 1:2.75 which span a wide range of present-day
DL-cameras (in Fig. 8(b)). Note that the resolution-ratios and
focal length ratios are synonymous [15], [32], and therefore
findings from Fig. 8(b) hold good for focal length ratios as
well. It is evident from the figure that though our network is
trained for 1:2 case, the performance-decay is quite less over
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Fig. 7. Visualization of SvId-ASPP masks in different branches (RF is filter’s receptive field and r is sampling rate). In Figs. (b-e), image regions with edges
and textures which typically undergo higher degradations have larger receptive fields thereby allowing space-variant deblurring. Further, the masks vary with
scene composition (compare Fig. 1 and Fig. 2), thereby admitting image-dependent deblurring.

Fig. 8. Analysis: (a) Performance analysis for different resolution-ratios. (b) Analysis of image-noise (AWGN). (c) Evaluation of view-consistency using the
subjective measure SAR [4]. (d) Application of view-consistency for DL super-resolution [31].

other cases, and further, view-consistency is well-preserved
over the entire range (via close left-right PSNRs). This reveals
the generalization capability of the coherent fusion module in
channelling rich complementary features for diverse resolution
and focal length ratios. Further, we analyse the effect of noise
by introducing AWGN (0 ≤ σ ≤ 5 pixels) independently
in the two views (in Fig. 8(a)). Note that over the entire
σ range, the PSNRs are over 29 dB, and PSNR-differences
are within 0.7 dB. This noise-robustness can be primarily
attributed to the process of noise-addition during training (as
in [40]). Note that our assumption of changing the resolution
is equivalent to changing focal length is not strictly true for
actual sensors with Bayer pattern and sensor noise. To account
for this subtle inaccuracies, we consider real blurred images
captured by actual unconstrained DL cameras (please see
Sec. V-C).

2) Ablation Studies: To study the effectiveness of the
proposed modules, we replace them with suitable analogous
modules and retrain using the same strategy. Regarding coher-
ent fusion, the major difference of our method from the
only-existing DL-BMD network [40] is the view-aggregation
at node-pair {A, B} + self-supervision costs at {A, B}, and
only self-supervision costs at node-pair {C, D}. Therefore
to analyse the effect of coherent fusion, we remove those
three components and considered view aggregation of [40]
(at node-pair {C,D} in Fig. 2). In Table III, note the devi-
ation by a large margin the deblurring performances in left-
and right-views, which reveals significant view-inconsistency.
This implies that information fusion seldom happens with-
out coherent fusion modules, and here, the network tries

TABLE I

EFFECT OF SELF-SUPERVISION COSTS AT {C, D} ON PSNR-OFFSETS

AND NETWORK-SIZE FOR DIFFERENT UNCONSTRAINED DL
EXPOSURE (EXP) RATIOS. (LOWER VALUES ARE BETTER.)

to primarily improve the right-view PSNR (which is easy
to accomplish due to its less information-loss), but neglects
the left-view (where PSNR improvement is difficult due to
more information-loss). Further, we analyse the effect of
self-supervision costs at node-pair {C, D} on view-consistency
in Table I. Note that even though the costs at {C, D} do not
increase the number of training parameters, they provide a
marginal improvement in view-consistency. To study the effect
of adaptive scale-space, we considered only our fine-scale
network for unconstrained DL configuration. Here, note that
the MAE of disparities for different cases are quite high,
which in turn leads to scene-inconsistent depth. We further
study the effect of Eqs. (11) and (10) on multi-scale network,
by retraining a similar network but with Eq. (10) using the
same shared-weight strategy. It is clear from Table II that the
multi-scale network with Eq. (11) performs better. Finally,
we analyse our SvId ASPP for deblurring by replacing it
with analogous ASPP module [3]. Table III reveals that the
SvId ASPP significantly boosts the PSNRs as compared to
the standard ASPP. Importantly, our method performs best in
all aspects when all the three modules are present.
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TABLE II

EFFECT OF EQS. (10) AND (11) IN OUR MULTI-SCALE NETWORK
ON DISPARITY ERRORS AND NETWORK-SIZE.

(LOWER VALUES ARE BETTER.)

3) Importance of View-Consistency: To quantify the
view-consistency of DL-BMD for stereoscopic applications,
we consider the ‘stereo-pairs accounting for rivalry’ (SAR)
metric [4] which measures the quality of DL images that
have been afflicted by asymmetric distortions (≤ 1 and
higher values are better). Figure 8(c) compares SAR of
state-of-the-art deep learning methods on the unconstrained
dataset, which highlights the effectiveness of our proposal for
those applications. For illustration, we employ those BMD
methods as a preprocessing stage for a state-of-the-art DL
super-resolution method [31], and quantify its performance
in Fig. 8(d). Notably, there is a significant performance drop in
competing methods (i.e., atleast by 4 dB), which is possibly
because [31] is designed for view-consistent inputs akin to
most DL-based works [2], [7], [11], but as revealed by SAR,
the competing methods are ineffective in supplying to them
view-consistent inputs.

4) View-Inconsistency via Bootstrapping: There exist DL
applications that are not meant for stereoscopic vision, where it
is desirable to have maximum deblurring performance in indi-
vidual views. But due to training with the coherent fusion mod-
ule, our method seldom raises the performance in one-view
without respecting the other-view. So as to enable our network
to cater to those kind of applications, we propose a bootstrap-
ping approach where our trained network is fine-tuned without
the self-supervision costs (L L R and L R R). Since we are start-
ing with a well-balanced deblurring performance in the two-
views, there exists a superior view-aggregation [40] provided
by the already improved highly-degraded input image. This
allows further restoration of blurred image that has relatively
more image-features, while maintaining the superior perfor-
mance of the other-view. Table III and Figs. 9–10 provide our
bootstrapped results as well, which clearly reveals that our
approach outperforms all other methods in this aspect too.

C. Comparisons

We consider for evaluation diverse DL-BMD methods,
i.e., [40] that is designed for unconstrained DL and static
scenes, and [15], [34] that handle constrained DL for dynamic
scenes. We also include various state-of-the-art single-lens
methods to represent scale-space approach [27], generative
models [13], [22], and patch-based approach [37]. Following
the comparison scheme of state-of-the-art DL-BMD [40],
we fully fine-tune all deep learning based comparison methods
on our new unconstrained DL dataset for fair comparison.
Specifically, [13], [22], [27], [37], [40] were trained on our
unconstrained DL dataset for 200K iterations with a batch size
of 1. We also considered for evaluation constrained DL dataset
of [40] and unconstrained DL static-scene dataset of [15].

Table III provides the quantitative evaluation of deblurring
performance for different unconstrained DL settings. Our
method has good PSNR in the left-right views with the least
offset, which implies superior view-consistency. Note that even
though the methods [13], [27], [37], [40] outperform ours
for right-view images (i.e., PSNR+PS:Offset in Table III),
those methods cannot perform well for the left-view mainly
due to its relatively higher degradations (i.e., both motion
blur and down-sampling), where our method showcase large
gains. The reason is that, unlike our method (Sec. II-A), those
methods lack a mechanism to transfer rich complimentary
information from high-resolution to low-resolution/left-view
images (which explains our higher left-view PSNR com-
pared to other methods). Further, as discussed in Sec. V-B.4,
the coherent fusion module equalizes the features of the two
views for view-consistency, which limits our right-view PSNR
to increase unconditionally without improving the other view
(which explains our trade-off in right-view PSNR). Note that
our bootstrap approach in Sec. V-B.4 addresses this trade-off
(Table III). Also, it is evident from the Table that the compet-
ing methods produce a large discrepancy in disparities (e.g.,
MAE above two pixels in the exposure-case 3:5) whereas
our scale-space approach is able to curb this effect. In terms
of speed, our method is comparable to deep learning meth-
ods, and significantly better than model-based optimization
methods [15], [34]. Averaging over all the seven cases, our
method has a PSNR of 30.653 dB with an offset 0.706.
More important, ours has a good margin over the next-best
competitor [40] (27.718 dB with an offset 6.074). For qual-
itative evaluation, we provide two unconstrained examples
with both left-right views (Fig. 9(1) and 10), and for all
other examples we provide the left-view image with inset
magnified left/right patches (with green/red boundary) from
the highlighted image-region (in view of space). Nevertheless,
we provide several unconstrained DL examples with both
left-right views in our supplementary. It is evident from Fig. 9
that existing methods are not adequate for unconstrained DL
dynamic scene deblurring, which calls for a new approach
(like ours). We also evaluate our method on unconstrained
DL static scene blur examples (from [15]) and constrained
DL blur examples (from [40]) in Fig. 10 and demonstrate
competitive performances. In summary, our method seam-
lessly addresses unconstrained DL dynamic scene deblurring
under diverse exposures, exposure-overlap, and resolution-
ratio; unconstrained static scene deblurring as in [15], and
constrained DL deblurring as in [40].

We consider also for comparisons, real examples captured
using actual unconstrained dual-lens cameras (Fig. 11(1-4)).
Following [15], we employed the unconstrained DL set-up
of Samsung S9+ smartphone to create this dataset, which
provides a narrow- and wide-FOV pair with focal length
52 mm and 26 mm respectively, with former having twice
the resolution. The examples include two well-lit scenarios
(Fig. 11(1,4) and two-low-lit scenarios (Fig. 11(2,3). For com-
parison, we considered all the dual-lens deblurring methods
( [15], [34], [40]) and two single-image deblurring methods
([22], [37]). Qualitative experiments in Fig. 11 reveal that our
method produces good deblurring results overall, in particular,
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TABLE III

QUANTITATIVE EVALUATIONS: SA - SCALE ADAPTIVE; CF - COHERENT FUSION; BS- BOOTSTRAP. (FIRST/SECOND)

Fig. 9. Comparisons for unconstrained DL configuration (examples 1 - 3:5 case, 2 - 4:3 case, and 3 - 1:1 case. ( First example provides left-view (first-row)
and right-view individually, whereas remaining examples provides left- and right-view patches inset. Our method is able to produce view-consistent results as
compared to the competing methods (compare patches from both views). After bootstrapping (1(g) and 3(g)), our method produces good view-inconsistent
results as well (please use high-resolution displays for best view).

Fig. 10. Comparisons for constrained DL dynamic scene blur case (from [40]) and unconstrained DL static scene case (from [15]). Our method produces
the best view-consistent results, and our deblurring performance is comparable with the state-of-the-art methods.

quite good restoration for the left-view which is degraded by
both low-resolution as well as motion blur, and produces good
view-consistencies between the left-right views as compared
to the competing methods.

(Please refer to our supplementary for training details
and cost analysis, details of dataset generation, extensive
comparisons of Figs. 9–10, remaining results of Table III
(Cases 1, 4-6), SSIM evaluations for Sec. V-B.1, and
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Fig. 11. Qualitative comparisons with real unconstrained DL images: Examples 1 and 4 depict well-lit scenarios, whereas examples 2 and 3 depict low-lit
scenarios. First two examples provide left-view (first-row) and right-view individually, whereas remaining examples provide left- and right-view patches inset.
Note that our method exhibits quite good deblurring performance, especially for the left-view which is degraded by both low-resolution as well as motion
blur, and produces good view-consistencies as compared to the competing methods.

qualitative results of the SAR implication in Sec. V-B.3. Fur-
ther, we provide additional evaluations in DL-BMD datasets
of ours, [40], and [15].)

Limitations: Extensive quantitative and qualitative evalua-
tions of state-of-the-art BMD methods on our unconstrained
DL blur dataset reveal that the low-resolution/left-view images
(which incur degradation due to both motion blur and down-
sampling) admit significantly less information-retrieval per-
formance as compared to the high-resolution images (which
have only motion blur). This motivated us to employ the
high-resolution image as the reference to transfer complimen-
tary information (Sec. II-A). However, there exist scenarios
where this scheme is not effective. For example, consider an
over-lit (or low-lit) scene wherein the high-resolution image
is highly over-exposed (or underexposed) as compared to the
low-resolution image. Note that our dataset does not contain
such extreme cases, as in standard motion blur datasets [16],
[40], and our method is not applicable to those scenarios.

VI. CONCLUSION AND FUTURE WORKS

In this paper, we proposed the first dynamic scene deblur-
ring method for present-day unconstrained DL cameras and

addressed its three major problems: First, we dealt with the
inherent view-consistency problem using a Coherent Fusion
Module. Next we addressed the problem of scene-inconsistent
disparity via an Adaptive scale-space approach. This enables
effectively adapting a standard deep learning network for
different image-scales. Finally, we tackled the space-variant
image-dependent nature of dynamic scene blur by proposing
an advanced ASPP module. We also contributed a new dataset
for the current problem. Various evaluations with the state-of-
the-art methods reveal the importance of our method.

Several deep learning based AR/VR applications using DL
cameras, e.g., super-resolution [11], [31] and style-transfer
[2], [7], directly applied to unconstrained DL set-up naturally
leads to view-inconsistency. Our Coherent Fusion Module
can potentially extend these methods to tackle this problem.
Second, our Adaptive Scale-space Approach can potentially
allow existing deep-learning networks meant for diverse appli-
cations to effectively accommodate low-resolution images
(e.g., [40] in Fig. 5(c)). Further, the ASPP [3] is widely-used
in semantic segmentation, object detection, and visual question
answering. But SvId nature is inherent in these applications
as well, e.g., spatial-locations and scales of semantic objects
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in an image can freely vary, and these attributes are image-
dependent. Therefore, another exciting research direction is to
explore the potential of SvId-ASPP for those applications.
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The contents of this supplementary material are arranged as follows:
1) Justifications

a) Justification that the coherent fusion module imposes Condition A and B.
b) Justification of Remark 2 (i.e., as compared to using the same network as a black-box to process lower image-scales

as in Eq. (10), the network mapping in Eq. 11 is optimal.)
c) Justification of Remark 3 (i.e., our ASPP in Eq. (13) admits SvId mapping with diverse receptive fields and admits

numerous filter realizations).
2) Analysis and Discussions

a) Inadequacy of the DL Prior in [5] for dynamic scene DL-BMD (from Sec. III-A).
b) Implementation details and Cost analysis (extension of Sec. V-A).
c) Dataset generation.
d) Extensive evaluation (i.e., Cases 1, 4-6 of Table III, SSIMs of Sec. V-B1, and detailed comparisons of Figs. 9–10)
e) Qualitative comparisons of DL-BMD preprocessing for DL super-resolution [16] (Sec. V-B3).
f) Additional evaluations in our unconstrained-DL dynamic scene blur dataset (with detailed comparisons).
g) Visualization of left-view and right-view images for our unconstrained-DL dynamic scene blur dataset.
h) Additional evaluations in unconstrained-DL static scene blur dataset [5] (with detailed comparisons).
i) Additional evaluations in constrained-DL dynamic scene blur dataset [22] (with detailed comparisons).

Note: The sections, equations and figures in the supplementary are indexed with a prefix ‘S’ (e.g., Eq. (S3), Sec. S4).

S1. JUSTIFICATIONS OF REMARKS 1-3

(a) Remark 1: Given that the costs {LLR, LRR} are imposed, the mapping of Eqs. (2)-(4) minimizes individual costs
LLR and LRR. Further, both costs LLR and LRR are necessary to satisfy the conditions: (A) The nature of output signals in
the left-right views are identical; (B) Both the outputs exhibit the properties of the input with higher information.
Justification: (For the sake of simplicity, we first assume that occlusions and specularities in DL images are negligible.) To
justify the first part, it is sufficient to show that there exists atleast a case where the mapping in Eqs. (2)-(4) attains the least
objective (zero) for the costs LLR and LRR (as LLR, LRR ≥ 0). It is evident from Eqs. (2)-(4) that the cost LLR = 0 when
WL = WR = 1, and LRR = 0 when W = WR = 1. To justify the second part, we show that criteria that minimize LLR

satisfies the Condition A but not necessarily Condition B; similarly, criteria of LRR satisfies the Condition B but not necessarily
Condition A, and finally, the common criterion of LLR and LRR satisfy both Conditions A and B. For brevity, we refer to
“first-view is sourced by second-view” if the first-view’s output is formed by the second-view’s input. From Eq. (5), the cost
LLR = 0 implies yR = yL, (i.e., Condition A). For non-identical left-right inputs in general, the cost LLR = 0 when the left-
and right-views are sourced by only right-view (i.e., W = WL = 1 in Eqs. (2)-(4)), or only left-view (i.e., W = 0,WR = 1),
or a combination of left- and right-view (i.e., 0 ≺ W ≺ 1,WL = WR = 1). Clearly from Eq. (5), LRR > 0 for the last
two cases, as yR 6= xR (thereby violating Condition B). Similarly, LRR = 0 implies yR = xR, (i.e., condition B). The cost
LRR can be zero when right-view, but not left-view, is sourced by right-view (i.e., W = WR = 0) or both right and left view
are sourced by the right view (i.e., W = WL = 1). For the first case LLR > 0, as yR 6= yL (thereby violating Condition
A). Resultantly, the common criterion that minimizes LLR and LRR is when both the left- and right-views are sourced by
only right-view (which satisfies both Conditions A and B), which proves the remark. (Relaxing the assumption on occlusions
and specularities, the word “sourced” becomes “predominantly sourced”, wherein occlusion and specularity information will
be passed to left- and right-view outputs by the left-and right-view inputs, respectively.) Also, note that without the coherent
fusion module, the masks WL = WR = 0 (i.e., the center-view ceases to transfer complimentary information). It is evident
from the above discussion that in this case LLR > 0 and LRR > 0, and hence do not allow the minima (= 0).

Mohan M. R., Nithin G. K. and A. N. Rajagopalan are with the Department of Electrical Engineering, Indian Institute of Technology Madras, India.
e-mail: {ee14d023, ee15b047, raju}@ee.iitm.ac.in.
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(b) Remark: As compared to using the same network as a black-box to process lower image-scales as in Eq. (10), the
network mapping in Eq. 11 is optimal.

We briefly review some signal processing concepts used here [8]. For sake of simplicity, we consider one-dimensional signal
representation. We denote the frequency spectrum of a discrete signal x(n) by X(ω) (where ω is the frequency domain). The
convolution of x(n) and y(n) (denoted by x(n)∗y(n)) results in a frequency spectrum X(ω)Y(ω). Decimating a signal x(n)
by a factor D first removes its high-frequency content (via anti-aliasing filter) and then expands the frequency spectrum by D. In
contrast, interpolating a signal x(n) first compresses the frequency spectrum by D and then removes its high-frequency content
(via anti-imaging filter). We denote the decimation and interpolation by X↓D and X↑D, respectively. In general, decimation
followed by an interpolation (i.e., (X↓D)↑D) is not an inverse operation due to anti-aliasing operation. For brevity, we refer
to “a particular feature of X(ω) matches Y(ω)” if that feature of X is present in Y as it is or as in a decimated form.

We next provide an outline of our proof. In a scale-space network, the output of lower-scale network should be the decimated
version of the fine-scale network-output [2], [15], [6]. This implies that frequency spectrum of lower-scale network-output must
match to that of fine-scale network-output (except at those high-frequency features lost due to decimation). Our DL deblurring
network maps the input via a composition of individual functions, which are realized using a cascade of convolutions, non-
linearities (Leaky ReLu), decimations in encoder and interpolations in decoder, etc. Resultantly, for output features of lower-scale
networks to match that of fine-scale network, all those individual functions must map to matching features for all image-scales.
However, we show (in Remark 2) that directly employing the fine-scale network in lower-scales maps to complimentary features
for convolutions, and hence fails to produce matching features in lower-scales. Further, we show that our proposed transformation
alleviates the aforementioned issue of convolutions. Finally, we show that this property of transformation generalizes to other
network-functions as well, as required in a scale-space network.

We first consider the case of convolution, which maps an input tensor f with depth d to a tensor g with depth d′ as

gj =

d∑
i=1

f i ∗ h{i,j} : 1 ≤ j ≤ d′, (S1)

where gj (the jth layer of g) is produced by aggregating the convolution of f i and filters h{i,j} ∀i. In particular, f in a decoder
stage is obtained by concatenating feed-forward encoder features and decoder features [22], whereas the standard residual block
(i.e., gj =

∑d
i=1 f

i ∗ h{i,j} + f i) and atrous spatial pyramid pooling (i.e., gj =
∑d

i=1

∑p
k=1 f

i ∗ h{i,j,k} ) [1] has equivalent
convolution filter as h

{i,j}
= h{i,j} + δ(i, j) and h

{i,j}
=

∑p
k=1 h

{i,j,k}, respectively.
Remark 2: Convolution filters optimized to map certain frequency features in the fine-scale (Eq. (9)) need not map to matching
features in lower scales (Eq. (10)), whereas with the transformation in Eq. (11) map to matching features.
Justification: The mappings in both Eqs. (10) and (11) employ identical convolution filter in fine-scale as well as lower scales
(via the same T (·)), but the difference is that for lower-scales the former gets a decimated input, whereas the latter gets an
interpolated version of the decimated input (i.e., with the same resolution of fine-scale). In frequency domain, convolution
mapping (Eq. (S1)) in the fine-scale is

Gj(ω) =

d∑
i=1

Fi(ω)H{i,j}(ω), (S2)

where H{i,j}(ω) is the frequency spectrum of convolution filter. The spectrum H{i,j}(ω) is typically non-uniform [19] and
hence maps/extracts frequency features in a specific way (e.g., in Fig. 5(1), the filter extracts desired features while suppressing
undesired features). Now we consider the case of using the same operation of Eq. (S2) for lower scales (i.e., Eq. (10)). This
results in

G′
D

j
(ω) =

d∑
i=1

Fi(ω)↓D.H
{i,j}(ω), (S3)

Note that the spectrum H{i,j}(ω) now maps/extracts frequency features in a different way as compared to Eq. (S2) (due to
expanded input spectrum). Resultantly, it can map to non-matching features in lower scales (e.g., see Fig. 5(2) where the
desired features get suppressed). Next, we consider the proposed transformation (Eq. (11)):

GD
j(ω) =

d∑
i=1

Fi(ω)↓D↑D.H
{i,j}(ω). (S4)

Note that we do not consider the overall decimation of Eq. (11) as it is not present after each convolution stage (but only
once at the network-output). In Eq. (S4), frequency features of input coincide with that of the fine-scale input in frequency
domain (due to inverse-scaling or ↑ D). Resultantly, the spectrum H{i,j}(ω) maps/extracts frequency features in the same way
as compared to Eq. (S2), and hence map to matching features (except at those high-frequency features lost due to anti-aliasing)
as warranted by scale-space network. This is illustrated in Fig. 5 (compare Figs. (2) and (3)).

Remark 2 establishes that our transformation in lower-scales maps to matching features for convolution stages. We next
show that this transformation is favourable in other network-stages as well, which ensures its applicability for lower-scales.
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(a) DL-prior [5] Analysis (b) Resolution-ratio Analysis (SSIM) (c) Noise Analysis (SSIM)

Fig. S1: (a) Due to possibly different relative-motions in individual dynamic objects, the pose-ambiguity of DL-prior [5] need not be
identical in different objects. The figure shows the case of different in-plane rotation ambiguity ({R1,R2,R3}) in three different objects,
which clearly derails the scene-consistency as required for most DL applications. (b) Performance analysis for resolution-ratios (SSIM). (c)
Performance analysis of image-noise (SSIM).

Generalization of Remark 2: The non-linearities, such as bias, leaky ReLU, etc., optimized for fine-scale is applicable to
lower scales under the input-feature transformation of Eq. (11).
Justification: The non-linear transformations such as bias, leaky ReLU, etc., are point-wise operations and these functions
are continuous (in particular, bias is a constant point-wise offset and leaky ReLU is continuous though not differentiable at
origin). Further, as input images have predominantly low-frequency components, which is supported by the natural image
priors such as total variation [11], l0 in image-gradients [20], dark-channel [9], etc., input features to these non-linearities are
predominantly low-pass. Therefore, the point-wise values of decimated (by D) and then interpolated (by D) version will have
closer intensity values as that of the fine-scale image. Hence, due to closer point-wise values and continuous characteristic
of non-linear functions, the response of the non-linearities to decimated-and-then-interpolated input must be closer to the
corresponding response of the fine-scale input. Finally, under the assumption that anti-aliasing and anti-imaging filters are
ideal, intermediate stages of decimation (in encoder) and interpolation (in decoder) map to matching features as that of fine-
scale network. Therefore, with the proposed transformation of Eq. (11), fine-scale network in lower scales map to matching
features as that of fine-scale (as required in a scale-space network).

(c) Remark 3: Our ASPP (Eq. (13)) admits SvId mapping with diverse receptive fields wherein each receptive field (other
than 1 – the identity mapping) admits numerous filter realizations.
Justification: The resultant filter in Eq. (13) at spatial location {m,n} can be represented as

y = x ∗ k′(m,n), where k′(m,n) = We1(m,n) · k′
e1 + We2(m,n) · k′

e2 + · · ·+ Wep(m,n) · k′
ep (S5)

As the masks Wei(m,n), 1 ≤ i ≤ p (in Eq. (13)), that linearly combine filter basis k′
ei, can vary with spatial-coordinates

(m,n), our modified ASPP can produce different filters at different spatial locations. Further, as those masks are function of
input blurred image (via mask-generating network), the modified ASPP becomes image-dependent as well, and hence admits
SvId mapping. Denoting the receptive field of a filter k′ as R(k′), the receptive field for the modified ASPP at a coordinate
(m,n) becomes maxR(k′

ei) if ∀j > i,Wej(m,n) = 0, and hence the image-dependent masks diversifies the receptive field
(Fig. 6(b)-bottom). Further, a resultant filter with receptive field R(k′

ei) can be realized by numerous linear combination
of filters k′

ej : j ≤ i, specifically, in Eq. (S5) filters obtained by all possible combinations for Wek(m,n) : k < i with
Wei(m,n) > 0 and Wek(m,n) = 0 : k > i. Also, note that even though the individual filter-basis (kei) is sparse, this linear
combination of multiple filter-basis can produce dense filter for a given receptive field. Finally, a cascade of M such modules
for deblurring retains the SvID property, and further increases the receptive field to {

∑M
i=1R(k′(i))} −M + 1, where k′(i) is

the effective filter (Eq. (S5)) at the ith stage (because R(k′
1 ∗ k′

2) = R(k′
1) +R(k′

2)− 1 [8]).

S2. ANALYSIS AND DISCUSSIONS

(a) Inadequacy of the DL-prior [5]: Dual-lens prior in [5] is not directly applicable in producing scene-consistent disparities
in dynamic-scene deblurring for unconstrained DL.
Justification: First, we summarize the working principle of DL-prior. According to Claim 1 in [5], there exist multiple valid
solutions of MDF-pairs (that quantify camera-motion) for image-pair in the left-right views, wherein some solutions produce
scene-inconsistent disparities. Assuming that motion blur is due to only camera motion, the DL prior in [5] promotes a valid
MDF-pair, but which can only resolve the deblurred image upto an unknown pose-variation of the actual scene (which is
denoted by Rn). To aid a fair evaluation, we allow the following relaxations in [5]: (a) Despite [5] restricts to only 3D
rotation-changes due to only camera-motion assumption, we assume that [5] handles 3D translations as well, which is required
to model dynamic scene blur [10], [13]. (b) Even though extending [5] for dynamic scene deblurring is non-trivial, as it involves
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Input 
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CFCF

View-1
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+

View-1
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Om Nama Sivaya

+

ResBlock Mask-generating network

CF Coherent Fusion Module
(Fig. 2)

SvId
ASPP

{A,B,C,D}

SvId-ASPP 
(in Fig. 5, with 

 rates {A,B,C,D})

Conv ResBlock Conv 
 (stride =2)

Sigmoid

Deconv 
 (stride =2)

Feed-forward connections

Encoder Decoder

Feature Mapping

+

(a) Our Memory-efficient Multi-scale Network (b) Our Fine-scale Network

Fig. S2: Network Architecture: (a) Our multi-scale network is obtained by reusing the same network (our fine-scale network) using the
proposed transformation (highlighted in yellow). (b) Our fine-scale network consists of a three-stage encoder/decoder, with SvId employed
for feature mapping and coherent fusion module to balance signals in the two-views. The same network is shared for both views.

complex pipeline which include coherently segmenting dynamic objects in the two views and stitching different segments with
negligible artifacts in seams [10], [13], [18], we assume that such a pipeline exists. Now we proceed to the justification. The
ambiguity due to Rn causes a relative change in scene-orientation in both the views. Though it does not produce any issues
for the case of static scene (as it renders the entire scene to have an arbitrary pose-change), this is not the case for dynamic
scenes where each dynamic object can have (relative) independent motion. Let there be x dynamic objects, then the DL-prior
on individual segments produces n independent pose-ambiguity (say Ri

n, 1 ≤ i ≤ x) as the MDFs in each segments can be
unrelated. Resultantly, it renders individual objects in the scene to have different pose-changes, e.g., as illustrated in Fig. S1(a),
a horizontally moving object, with respect to background, can be rendered moving diagonally due to an in-plane rotational
ambiguity (as considered in Fig. (2) of [5]), which clearly distorts scene-consistent disparities.

(b) Implementation details and Cost analysis: Figure S2 provides our multi-scale and fine-scale deblurring networks. Note
that the proposed techniques are highlighted in yellow, and both views share the same architecture. As shown in Fig. S2(a),
our multi-scale network is generated by reusing the fine-scale network, but with the transformation in Eq. (11). Our fine-scale
network (Fig. S2(b)) consists of three encoder-decoder stages with SvId-ASPP for feature-mapping, and coherent fusion module
to balance the nature of left-right view inputs (for view-consistency). To control possible intensity variations between the left-
and right-view features, we normalize the mean and standard deviation of the left-view input of the coherent fusion module to
that of its right-view input. We employ leaky-ReLU as the non-linearity, and all filter-weights are selected as 3×3 for memory
considerations. For disparity estimation, we employ an off-the-shelf disparity estimation network of [22]. We do note that since
our method requires only disparity-maps (unlike [22] which warrants network-specific disparity-features too), any disparity
estimation methods irrespective of conventional and deep learning based can be employed in our method. To create bilinear
masks, we consider the light-weight network shown in Fig. S2(b) with a soft-max layer at the end to normalize multiple masks
(of SvId-ASPP). The input to the mask-generating network of coherent fusion module is the difference of the registered input
two-view features. We employ independent mask-generating networks for coherent fusion module and SvId-ASPP due to their
different functions.

For training our deblurring network, apart from the self-supervision costs of coherent fusion module (Eq. (5)), we consider
two supervision costs to measure the difference between the deblurred images ({L̂L, L̂R}) and sharp images ({LL,LR}) for
the left-right views (as discussed in Sec. III-B, we average these losses over all network-levels.) The first one is an objective
cost based on the standard MSE loss:

Lmse =
1

S

S∑
l=1

1

2CMN

∑
k∈{L,R}

‖L̂k
l − Lk

l ‖2, (S6)

where S is the number of scale-space network-levels, Ll denotes image at level l, and C, M , and N are dimensions of image.
The second cost is the perceptual loss employed in [22], which is the l2-norm between conv3-3 layer VGG-19 [14] features
of deblurred images and sharp images:

Lvgg =
1

S

S∑
l=1

1

2CvMvNv

∑
k∈{L,R}

‖Φvgg(L̂k
l )− Φvgg(Lk

l )‖2, (S7)

where Φvgg is the required VGG mapping, and Cv , Mv , and Nv are dimensions of VGG features. Denoting the normalized
coherent fusion cost in Eq. (5) as Lcf , our overall loss function is empirically selected as 0.4Lcf + 0.5Lmse + 0.1Lvgg. Our
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TABLE S1: Quantitative evaluations: SA - Scale adaptive; CF - Coherent fusion; BS- Bootstrap. (First/Second)

Method Xu et al.
[18]

Mohan et
al. [5]

Tao et al.
[15]

Ramakrishnan
et al. [12]

Kupyn et
al. [3]

Zhang et
al. [21]

Zhou et
al. [22]

Ours Ours
(BS)

Ours
W/o SA

Ours
W/o CF

Ours W/o
SvID

Unconstrained DL Case 1: Exposure 1:3
MAE 1.9071 1.3504 1.8256 1.7762 1.7738 1.9312 1.7658 0.7718 0.7838 1.7782 0.7846 0.7952
PSNR 22.118 27.724 27.844 27.952 27.938 27.665 28.102 30.132 30.127 29.852 28.456 29.177
PS:Offset 1.7510 2.6440 6.3310 7.4838 7.2230 5.4890 6.0460 0.1580 6.3260 0.2532 6.1211 0.2541
SSIM 0.53 0.888 0.874 0.883 0.873 0.871 0.890 0.915 0.895 0.908 0.900 0.899
SS:Offset 0.1280 0.0070 0.0820 0.0789 0.0870 0.0770 0.0680 0.0030 0.0290 0.0080 0.0710 0.0076

Unconstrained DL Case 4: Exposure 3:1
MAE 2.1500 2.4130 1.7118 1.6926 1.6711 1.7940 1.6991 0.7277 0.7301 1.7754 0.7431 0.7517
PSNR 17.958 28.79 27.246 27.432 27.360 26.007 26.991 31.762 31.027 29.971 27.357 28.177
PS:Offset 1.446 3.261 11.20 12.568 17.61 12.430 20.832 0.6580 18.663 0.7574 17.683 0.8531
SSIM 0.447 0.831 0.863 0.872 0.863 0.862 0.857 0.963 0.957 0.9228 0.877 0.902
SS:Offset 0.0932 0.0505 0.1252 0.1148 0.1324 0.1192 0.1309 0.0120 0.0652 0.0216 0.0581 0.0238

Unconstrained DL Case 5: Exposure 3:4
MAE 1.965 1.2340 1.9217 1.8620 1.8645 2.0192 1.8837 0.8716 0.9142 1.9218 0.8872 0.8712
PSNR 14.317 27.725 27.303 27.511 27.415 27.191 27.426 30.989 30.402 30.343 27.534 28.983
PS:Offset 1.1313 3.6684 3.4016 1.8151 2.4014 2.5233 5.6360 0.2192 3.4823 0.2380 3.2328 0.2254
SSIM 0.361 0.837 0.878 0.879 0.873 0.872 0.883 0.923 0.917 0.911 0.886 0.901
SS:Offset 0.0724 0.0571 0.0412 0.0142 0.0432 0.0312 0.0289 0.0004 0.0381 0.0005 0.0352 0.0007

Unconstrained DL Case 6: Exposure 5:3
MAE 1.7010 2.0560 2.2449 2.2331 2.1969 2.3640 2.2324 0.9266 0.9322 2.1731 0.9281 0.9279
PSNR 14.515 25.278 25.702 25.705 25.802 25.536 25.504 29.983 28.775 28.745 26.356 27.651
PS:Offset 1.108 2.099 8.5371 7.1472 6.9022 6.2460 6.5837 0.7210 8.134 0.9730 7.8622 0.9274
SSIM 0.37 0.828 0.841 0.843 0.841 0.840 0.844 0.921 0.905 0.887 0.855 0.861
SS:Offset 0.073 0.0220 0.1060 0.0928 0.0932 0.0924 0.0941 0.0042 0.0595 0.0073 0.0912 0.0071
Time (S) 2160 1630 0.507 0.37 0.39 0.524 0.31 0.34/scale 0.34/scale 0.34/scale 0.33/scale 0.31/scale

Size (M) - - 8.06 4.17 5.09 21.69 4.83 5.98 5.98 5.98 5.90 5.93

TABLE S2: Data distribution

Type Case 1
(1:3)

Case 2
(4:3)

Case 3
(3:5)

Case 4
(3:1)

Case5
(3:4)

Case 6
(5:3)

Case 7
(1:1)

Total
DL-images

Training 4,159 4,403 4,600 4,159 4,403 4,600 17,319 43,643
Testing 837 803 805 837 803 805 3,318 8,208

method is implemented using Pytorch 1.1.0 in a server with Intel Xeon processor and an Nvidia RTX 2080 TI GPU. For
training our model, we use Adam optimizer with β1 = 0.9 and β2 = 0.999, and set the batch-size as four. Following [22], [15],
we consider 256 × 256 patches for training. To aid generalization we perform random chromatic transformation (brightness,
contrast and saturation sampled uniformly from [0.15,0.85]) and Gaussian noise-addition (σ = 0.01). The decimation step-size
in our adaptive scale-space approach is selected as 1√

2
(following traditional scale-space deblurring methods [5], [17]). The

learning rate is decayed from 0.001 with a power of 0.3, and convergence is observed within 4,00,000 iterations.
We next analyse the computational cost of various DL-BMD methods (Table S1). As compared to the model-based

optimization methods [5], [18], deep learning based methods are very efficient in terms of processing time. In particular,
our method is atleast two orders faster than the competing techniques. In terms of memory requirement, the standard scale-
space approach [15] is quite expensive due to the usage of independent network weights over three network-levels. Also, this
memory requirement further increases if we have to increase the network-levels [15]. In contrast, our transformation allows the
same network to be used for multiple-scales, thereby maintaining the same memory requirement for diverse network-levels.
Overall, our deblurring network’s memory requirement is comparable to the competing state-of-the-art deep learning methods
[15], [21], [3], [21], [22] while exhibiting state-of-the-art performance.

(c) Dataset Generation: Since unconstrained dynamic scene blur has not been hitherto addressed, we created a dataset
with diverse exposure (like the constrained case in [22]). We follow a similar procedure as that of [22] in creating DL blur
dataset. We next highlight our differences. As typically followed in single-lens dynamic scene blur generation [6], a blurry
image is generated by averaging a sharp high frame rate sequence to approximate a long exposure. The dataset in [22] consists
of a wide variety of scenarios, both indoor and outdoor, which include diverse illumination, weather, and motion patterns.
To increase the video frame rate, it employs a fast and high-quality frame interpolation method [7] and generate different
blur-sizes by: (a) considering equal number of synchronized set of DL image-pairs in both left- and right-views (i.e., identical
and fully-overlapping exposures) (b) ground truth frame is temporally centered on the exposure time. The major difference
of our data generation is regarding the points (a) and (b). For Point (a), following [5], we do not consider synchronization
between DL image-pairs, but allow a random non-zero exposure-intersection (as shown in Fig. 2(a)). Further we allow different
number of DL image-pairs in the two-views in the ratio 1 : 1, 1 : 3, 3 : 1, 3 : 4, 4 : 3, 3 : 5, and 5 : 3 (totalling seven
exposure-cases). For all cases, following [5], exposure-overlap is randomly sampled from 10-100% with standard resolution
1:2. Table S2 provides the distribution of data samples. For Point (b), we consider the ground truth frame to be temporally
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centered on the intersection of the left-right view exposure times to ensure ground truth is view-consistent (unlike the case of
[22], as illustrated in Fig. 2(a)). (We will release our dataset upon acceptance.)

(d) We provide in Figures S3–S4 a detailed comparisons of the examples in the main paper (Figs. 9–10). Further, Table S1
provides the evaluation on remaining cases of Table III, and Figs. S1(b-c) provide the SSIM evaluation of Sec. V-B1.

(e) Figures S5–S6 provide qualitative results of the implication of view-consistency for DL super-resolution [16] (Sec. V-B3).
(Note that for quantitative evaluation in Fig. 8(d), as ground truth super-resolved results are not available, we used super-resolved
DL clean images as the reference for all methods.)

(f-h) Additional Evaluations: We provide more results on unconstrained DL static scene blur examples (from [5]) and
constrained DL blur examples (from [22]) in Figs. S10-S12 and Fig. S13, respectively. Further, we provide left-right views of
three unconstrained examples from our dataset in Figs. S7-S9. A thorough evaluation reveals that our method is comparable
with state-of-the-art methods. Further, we include ten more examples with detailed comparisons in Figs. S14-S18, covering
diverse unconstrained DL dynamic scene blur cases. In all the cases, our method produces view-consistent results and performs
better than the state-of-the-art methods.
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1(a) Input 1(b) Xu et al. [18] 1(c) Mohan et al. [5]

1(d) Tao et al. [15] 1(e) Kupyn et al. [3] 1(f) Zhang et al. [21]

1(g) Zhou et al. [22] 1(h) Ours 1(i) Ours bootstrapped

2(a) Input 2(b) Xu et al. [18] 2(c) Mohan et al. [5]

2(d) Tao et al. [15] 2(e) Kupyn et al. [3] 2(f) Zhang et al. [21]

2(g) Zhou et al. [22] 2(h) Ours 2(i) Ours bootstrapped

Fig. S3: Detailed comparisons of Figs. 9(1,2) in the main paper.
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2(a) Input 2(b) Xu et al. [18] 2(c) Mohan et al. [5]

2(d) Tao et al. [15] 2(e) Kupyn et al. [3] 2(f) Zhang et al. [21]

2(g) Zhou et al. [22] 2(h) Ours 2(i) Ours bootstrapped

1(a) Input 1(b) Xu et al. [18] 1(c) Mohan et al. [5]

1(d) Tao et al. [15] 1(e) Kupyn et al. [3] 1(f) Zhang et al. [21]

1(g) Zhou et al. [22] 1(h) Ours 1(i) Ours bootstrapped

Fig. S4: Detailed comparisons of Fig. 9(3) and Fig. 10(1) in the main paper.
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1(a) Kupyn et al. [3] (left-view) 1(b) Kupyn et al. [3] (right-view)

2(a) Tao et al. [15] (left-view) 2(b) Tao et al. [15] (right-view)

3(a) Zhang et al. [21] (left-view) 3(b) Zhang et al. [21] (right-view)

4(a) Zhou et al. [22] (left-view) 4(b) Zhou et al. [22] (right-view)

5(a) Ours (left-view) 5(b) Ours (right-view)

Fig. S5: Example 1: Applicability of different deblurring methods for DL super-resolution [16]. Note that our method is able to produce the
desired view-consistent super-resolution results.
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1(a) Kupyn et al. [3] (left-view) 1(b) Kupyn et al. [3] (right-view)

2(a) Tao et al. [15] (left-view) 2(b) Tao et al. [15] (right-view)

3(a) Zhang et al. [21] (left-view) 3(b) Zhang et al. [21] (right-view)

4(a) Zhou et al. [22] (left-view) 4(b) Zhou et al. [22] (right-view)

5(a) Ours (left-view) 5(b) Ours (right-view)

Fig. S6: Example 2: Applicability of different deblurring methods for DL super-resolution [16]. Note that our method is able to produce the
desired view-consistent super-resolution results.
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1(a) Input (left-view) 1(b) Input (right-view)

2(a) Ramakrishnan et al. [12] (left-view) 2(b) Ramakrishnan et al. [12] (right-view)

3(a) Kupyn et al. [3] (left-view) 3(b) Kupyn et al. [3] (right-view)

4(a) Zhou et al. [22] (left-view) 4(b) Zhou et al. [22] (right-view)

5(a) Ours (left-view) 5(b) Ours (right-view)

Fig. S7: Example 1: Left-right view comparisons in our unconstrained DL dataset. Our method is able to enhance the deblurring performance
in the left-view (which undergoes more degradations) and produce view-consistent results as compared to the competing methods.
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1(a) Input (left-view) 1(b) Input (right-view)

2(a) Ramakrishnan et al. [12] (left-view) 2(b) Ramakrishnan et al. [12] (right-view)

3(a) Kupyn et al. [3] (left-view) 3(b) Kupyn et al. [3] (right-view)

4(a) Zhou et al. [22] (left-view) 4(b) Zhou et al. [22] (right-view)

5(a) Ours (left-view) 5(b) Ours (right-view)

Fig. S8: Example 2: Left-right view comparisons in our unconstrained DL dataset. Our method is able to enhance the deblurring performance
in the left-view (which undergoes more degradations) and produce view-consistent results as compared to the competing methods.



IEEE TRANSACTIONS ON IMAGE PROCESSING: SUPPLEMENTARY MATERIAL 13

1(a) Input (left-view) 1(b) Input (right-view)

2(a) Ramakrishnan et al. [12] (left-view) 2(b) Ramakrishnan et al. [12] (right-view)

3(a) Kupyn et al. [3] (left-view) 3(b) Kupyn et al. [3] (right-view)

4(a) Zhou et al. [22] (left-view) 4(b) Zhou et al. [22] (right-view)

5(a) Ours (left-view) 5(b) Ours (right-view)

Fig. S9: Example 3: Left-right view comparisons in our unconstrained DL dataset. Our method is able to enhance the deblurring performance
in the left-view (which undergoes more degradations) and produce view-consistent results as compared to the competing methods.
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1(a) Input (left-view) 1(b) Input (right-view)

2(a) Tao et al. [15] (left-view) 2(b) Tao et al. [15] (right-view)

3(a) Mohan et al. [5] (left-view) 3(b) Mohan et al. [5] (right-view)

4(a) Zhou et al. [22] (left-view) 4(b) Zhou et al. [22] (right-view)

5(a) Ours (left-view) 5(b) Ours (right-view)

Fig. S10: Example 1: Comparisons for unconstrained static scene blur case (from [5]). Our method is able to produce view-consistent results
as compared to the competing methods. Note that the computational cost of [5] is very high as compared to our method (Table. S1).
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1(a) Input (left-view) 1(b) Input (right-view)

2(a) Kupyn et al. [3] (left-view) 2(b) Kupyn et al. [3] (right-view)

3(a) Zhang et al. [21] (left-view) 3(b) Zhang et al. [21] (right-view)

4(a) Mohan et al. [5] (left-view) 4(b) Mohan et al. [5] (right-view)

5(a) Ours (left-view) 5(b) Ours (right-view)

Fig. S11: Example 2: Comparisons for unconstrained static scene blur case (from [5]). Our method is able to produce view-consistent results
as compared to the competing methods. Note that the computational cost of [5] is very high as compared to our method (Table. S1).
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1(a) Input (left-view) 1(b) Input (right-view)

2(a) Zhang et al. [21] (left-view) 2(b) Zhang et al. [21] (right-view)

3(a) Zhou et al. [22] (left-view) 3(b) Zhou et al. [22] (right-view)

4(a) Mohan et al. [5] (left-view) 4(b) Mohan et al. [5] (right-view)

5(a) Ours (left-view) 5(b) Ours (right-view)

Fig. S12: Example 3: Comparisons for unconstrained static scene blur case (from [5]). Our method is able to produce view-consistent results
as compared to the competing methods. Note that the computational cost of [5] is very high as compared to our method (Table. S1).
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1(a) Input 1(b) Xu et al. [18] 1(c) Mohan et al. [5]

1(d) Tao et al. [15] 1(e) Kupyn et al. [3] 1(f) Zhang et al. [21]

1(g) Zhou et al. [22] 1(h) Ours 1(i) Ours bootstrapped

2(a) Input 2(b) Xu et al. [18] 2(c) Mohan et al. [5]

2(d) Tao et al. [15] 2(e) Kupyn et al. [3] 2(f) Zhang et al. [21]

2(g) Zhou et al. [22] 2(h) Ours 2(i) Ours bootstrapped

Fig. S13: Examples 1-2: Comparisons for constrained blur case (from [22]). Our method is able to produce view-consistent results as
compared to the competing methods.
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1(a) Input 1(b) Xu et al. [18] 1(c) Mohan et al. [5]

1(d) Tao et al. [15] 1(e) Kupyn et al. [3] 1(f) Zhang et al. [21]

1(g) Zhou et al. [22] 1(h) Ours 1(i) Ours bootstrapped

2(a) Input 2(b) Xu et al. [18] 2(c) Mohan et al. [5]

2(d) Tao et al. [15] 2(e) Kupyn et al. [3] 2(f) Zhang et al. [21]

2(g) Zhou et al. [22] 2(h) Ours 2(i) Ours bootstrapped

Fig. S14: Examples 1-2: Comparisons for unconstrained dynamic scene blur case (i.e., exposure 3:1 and 1:1). Our method is able to produce
view-consistent results as compared to the competing methods. After bootstrapping, our method produces good view-inconsistent result
(please compare both views).
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1(a) Input 1(b) Xu et al. [18] 1(c) Mohan et al. [5]

1(d) Tao et al. [15] 1(e) Kupyn et al. [3] 1(f) Zhang et al. [21]

1(g) Zhou et al. [22] 1(h) Ours 1(i) Ours bootstrapped

2(a) Input 2(b) Xu et al. [18] 2(c) Mohan et al. [5]

2(d) Tao et al. [15] 2(e) Kupyn et al. [3] 2(f) Zhang et al. [21]

2(g) Zhou et al. [22] 2(h) Ours 2(i) Ours bootstrapped

Fig. S15: Examples 3-4: Comparisons for unconstrained dynamic scene blur case (i.e., exposure 3:1 and 4:1). Our method is able to produce
view-consistent results as compared to the competing methods. After bootstrapping, our method produces good view-inconsistent result
(please compare both views).
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1(a) Input 1(b) Xu et al. [18] 1(c) Mohan et al. [5]

1(d) Tao et al. [15] 1(e) Kupyn et al. [3] 1(f) Zhang et al. [21]

1(g) Zhou et al. [22] 1(h) Ours 1(i) Ours bootstrapped

2(a) Input 2(b) Xu et al. [18] 2(c) Mohan et al. [5]

2(d) Tao et al. [15] 2(e) Kupyn et al. [3] 2(f) Zhang et al. [21]

2(g) Zhou et al. [22] 2(h) Ours 2(i) Ours bootstrapped

Fig. S16: Examples 5-6: Comparisons for unconstrained dynamic scene blur case (i.e., exposure 3:4 and 4:3). Our method is able to produce
view-consistent results as compared to the competing methods. After bootstrapping, our method produces good view-inconsistent result
(please compare both views).
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1(a) Input 1(b) Xu et al. [18] 1(c) Mohan et al. [5]

1(d) Tao et al. [15] 1(e) Kupyn et al. [3] 1(f) Zhang et al. [21]

1(g) Zhou et al. [22] 1(h) Ours 1(i) Ours bootstrapped

2(a) Input 2(b) Xu et al. [18] 2(c) Mohan et al. [5]

2(d) Tao et al. [15] 2(e) Kupyn et al. [4] 2(f) Zhang et al. [21]

2(g) Zhou et al. [22] 2(h) Ours 2(i) Ours bootstrapped

Fig. S17: Examples 7-8: Comparisons for unconstrained dynamic scene blur case (i.e., exposure 3:4 and 4:3). Our method is able to produce
view-consistent results as compared to the competing methods. After bootstrapping, our method produces good view-inconsistent result
(please compare both views).
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1(a) Input 1(b) Xu et al. [18] 1(c) Mohan et al. [5]

1(d) Tao et al. [15] 1(e) Kupyn et al. [3] 1(f) Zhang et al. [21]

1(g) Zhou et al. [22] 1(h) Ours 1(i) Ours bootstrapped

2(a) Input 2(b) Xu et al. [18] 2(c) Mohan et al. [5]

2(d) Tao et al. [15] 2(e) Kupyn et al. [3] 2(f) Zhang et al. [21]

2(g) Zhou et al. [22] 2(h) Ours 2(i) Ours bootstrapped

Fig. S18: Examples 9-10: Comparisons for unconstrained dynamic scene blur case (i.e., exposure 5:3 and 3:5). Our method is able to
produce view-consistent results as compared to the competing methods. After bootstrapping, our method produces good view-inconsistent
result (please compare both views).


