
MOTION DEBLURRING METHODOLOGIES:

GOING BEYOND CONVENTIONAL CAMERAS

A THESIS

submitted by

MAHESH MOHAN M. R.

for the award of the degree

of

DOCTOR OF PHILOSOPHY

DEPARTMENT OF ELECTRICAL ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY MADRAS.

January 2021



THESIS CERTIFICATE

This is to certify that the thesis titled Motion Deblurring Methodologies: Going Be-

yond Conventional Cameras submitted by Mahesh Mohan M. R. to the Indian Insti-

tute of Technology, Madras, for the award of the degree of Doctor of Philosophy, is

a bona fide record of the research work carried out by him under my supervision. The

contents of this thesis, in full or in parts, have not been submitted to any other Institute

or University for the award of any degree or diploma.

Dr. A. N. Rajagopalan,

Place: Chennai (Research Guide),

Date: January, 2021 Professor

Dept. of Electrical Engg.

IIT Madras

Chennai - 600 036.



ACKNOWLEDGEMENTS

It has been a snake-and-ladder game – ladders, snakes, a big snake, ladder, . . . Oh lost

count of the snakes! First and foremost, I thank God, or nature or whatever that force

is called, to give me the strength, even at my lowest ebb, to reach again to that dice,

dream, and take chance. For sure, I as one cannot help myself in those times; many

helped me in that act, even sometimes when I couldn’t see any chance forward, and I

believe no-one could. I am grateful to my guide Prof. A. N. Rajagopalan to help me tide

over some difficult times and for not giving up on me, without which this thesis would

not have been possible. I started this journey knowing almost nothing about doing and

communicating research; now if I know something about research and look forward to

learn and do more, I owe this mindset to his tiresome effort and guidance. Also, I am

particularly grateful to Prof. Aravind R., who was always a well-wisher for me since

the start of this journey, and whom I always believe will defend for me – a belief that

used to give me immense strength throughout this journey.

Though I do not know much Signal Processing, I am glad to tell that I love that

subject and I try to see all research problems in a Signal Processing perspective. I take

this opportunity to thank few hidden figures who worked to kindle a flare of this subject

within me; the credit of this thesis belongs to them as well. The list starts with my

father who made me comfortable with numbers in my childhood, and my mother who

believed in all my endeavours. Next in my list are my great teachers; to name a few,

Karuppunni Sir and Neelakantan Sir instilled in me a taste of mathematics in my school-

days; Prof. Suresh helped me to retain this spirit in my undergrad; and Prof. Pradeep

Sarvepalli and Prof. Krishna Jagannathan in IIT Madras enlightened me with a notion

that each mathematical claim has to have a solid proof. Also, I am indebted to Prof. A.

N. Rajagopalan, Prof. Aravind R., Prof. Kaushik Mitra, and Prof. Sheeba V.S. in teach-

ing me advanced Signal Processing subjects.

My list continues with my well-wishers, who motivated me when I could (or can)

not see any chance forward. Teacher Sherin, Tr. Lekshmi, Tr. Nirmala, Tr. Beena, and

Tr. Jayasree from my school, Chinmaya Vidyalaya Kunnumpuram, always provided me

ii



with much needed hope. The unwavering support of Anusree teacher in my undergrad

was my strength during several times; I still recollect she telling me “Mahesh can do”,

even when I found myself very ill-equipped. My friends Dr. Dinesh Krishnamoorthy

and Gopi Raju, and Prof. Kaushik Mitra play her role now, towards wishing me a Post-

doc position. The next in my list are those from whom I noted many life-lessons:

Prof. David Koilpillai for his affection, Mani Sir for his sincerity, Prof. Rajagopalan and

Prof. Aravind for their discipline, and Prof. Pradeep Sarvepalli and Prof. Sheeba V. S.

for their teaching preparations. My list is indeed long, and sadly, some figures are still

hidden; but I am always thankful for them for making the good in me.

The works of Dr. Oliver Whyte immensely helped me in my literature study. I

thank my doctoral committee members and the anonymous reviewers of my works

whose valuable comments and suggestions helped me in shaping my thesis. Also, I

thank my Thesis reviewers for providing constructive comments to improve this The-

sis. I also thank all members of our IPCV lab: Sahana, Purna, Karthik, Abhijith, Vijay,

Subeesh, Nimisha, Kuldeep, Arun, Sheetal, Praveen, Maithreya, Akansha, and Saurabh,

and many others for their cheerful company. It was also exciting to work with Sharath,

Sunil, and Nithin. I also thank my friends Nithin S., Dinesh K., Emmanuel, Dibakar,

Gopi, Br. Vinod, Soumen, Anil, and Rana, who came for me whenever I needed any

help. I would also like to express my love to my beautiful campuses GEC Thrissur and

IIT Madras for all the blessings showered on me. I also acknowledge the financial sup-

port from Ministry of Human Resource and Develoment, India, and travel grants from

Google, Microsoft, and ACM to participate in international conferences.

Finally, I would like to thank my family: Dr. S. Mohanachandran, Radhamany S,

Maneesha Mohan M. R., Vishnu M., and Dhyuthi Mohan (late) for their love and sup-

port. My parents have made countless sacrifices for me, and have provided me with

unwavering support and encouragement. Then there were often solo times in my life

which could easily slip towards loneliness and lack of purpose, but in many of those

times, there has been my Guardian Angel who doesn’t let me lonely, and takes me to a

happy world, gives dreams, and waits eagerly till I start fighting for those dreams. This

dissertation is dedicated to my parents, my teachers, and my Guardian Angel.

iii



ABSTRACT

KEYWORDS: Blind motion deblurring, motion blur models, rolling shutter cam-

eras, light field cameras, unconstrained dual-lens cameras, dy-

namic scene deblurring, deep learning.

Motion blur is a common artifact in hand-held photography. Presently, consumer

cameras have gone beyond the conventional cameras in order to have additional benefits

and functionalities. Three important such imaging devices are rolling shutter camera

(with extended battery life, lower cost and higher frame rate), and light field camera

and unconstrained dual-lens camera (which enable post-capture refocusing, varying the

aperture (f-stopping), and depth sensing). Their increasing popularity has necessitated

the need for tackling motion blur in these devices. In this thesis, we develop models

and methods for these cameras aimed at “restoring” motion blurred photographs, where

we have no particular information about the camera motion or the structure of the scene

being photographed – a problem referred to as blind motion deblurring.

First, we tackle motion deblurring in rolling shutter cameras. Most present-day

imaging devices are equipped with CMOS (complementary metal oxide semiconduc-

tor) sensors. Because CMOS sensors mostly employ a rolling shutter (RS) mechanism,

the deblurring problem takes on a new dimension. Although few works have recently

addressed this problem, they suffer from many constraints including heavy computa-

tional cost, need for precise sensor information, does not cater for wide-angle lenses

(which most cell-phone and drone cameras have), and inability to deal with irregular

camera trajectory. In Chapter 3, we propose a model for RS blind motion deblurring

that mitigates these issues significantly. Comprehensive comparisons with state-of-the-

art methods reveal that our approach not only exhibits significant computational gains

and unconstrained functionality but also leads to improved deblurring performance.

Next, we consider the case of light field (LF) cameras. For LFs, the state-of-the-art

blind deblurring method for general 3D scenes is limited to handling only downsampled
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LF, both in spatial and angular resolution. This is due to the computational overhead

involved in optimizing for a very high dimensional full-resolution LF altogether (e.g.,

a typical LF camera, Lytro Illum, contains 197 RGB images of size 433x625).

Moreover, this optimization warrants high-end GPUs, which is seldom practical from

a consumer-end. In Chapter 4, we introduce a new blind motion deblurring strategy

for LFs which alleviates these limitations significantly. Our model achieves this by

isolating 4D LF motion blur across the 2D subaperture images, thus paving the way

for independent deblurring of these subaperture images. Furthermore, our model ac-

commodates common camera motion parameterization across the subaperture images.

Consequently, blind deblurring of any single subaperture image elegantly paves the way

for cost-effective non-blind deblurring of the other subaperture images. Our approach

is CPU-efficient computationally and can effectively deblur full-resolution LFs.

Subsequently, we move to the case of unconstrained dual-lens cameras. Recently,

there has been a renewed interest in leveraging multiple cameras, but under uncon-

strained settings. They have been quite successfully deployed in smartphones, which

have become the de facto choice for many photographic applications. However, akin

to normal cameras, the functionality of multi-camera systems can be marred by motion

blur. Despite the far-reaching potential of unconstrained camera arrays, there is not a

single deblurring method for such systems. In Chapter 5, we propose a generalized

blur model that elegantly explains the intrinsically coupled image formation model for

dual-lens set-up, which are by far most predominant in smartphones. While image aes-

thetics is the main objective in normal camera deblurring, any method conceived for our

problem is additionally tasked with ascertaining consistent scene-depth in the deblurred

images. We reveal an intriguing challenge that stems from an inherent ambiguity unique

to this problem which naturally disrupts this coherence. We address this issue by devis-

ing a judicious prior, and based on our model and prior propose a practical blind motion

deblurring method for dual-lens cameras, that achieves state-of-the-art performance.

Finally, we focus on motion blur caused by dynamic scenes in unconstrained dual-

lens cameras. In practice, apart from camera-shake, motion blur happens due to object

motion as well. While most present-day dual-lens (DL) cameras are aimed at support-

ing extended vision applications, a natural hindrance to their working is the motion

blur encountered in dynamic scenes. In Chapter 6, as a first, we address the problem

of dynamic scene deblurring for unconstrained dual-lens cameras using Deep Learn-

v



ing and make three important contributions. We first address the root cause of view-

inconsistency in the generic DL deblurring network using a coherent fusion module.

We then tackle the inherent problem in unconstrained DL deblurring that violates the

epipolar constraint by introducing an adaptive scale-space approach. Our signal pro-

cessing formulation allows accommodation of lower image-scales in the same network

without increasing the number of parameters. Finally, we propose a filtering scheme to

address the space-variant and image-dependent nature of blur. We experimentally show

that our proposed techniques have substantial practical merit.
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If you can meet with Triumph and Disaster

And treat those two impostors just the same;

Or watch the things you gave your life to, broken,

And stoop and build’em up with worn-out tools:

If you can make one heap of all your winnings

And risk it on one turn of pitch-and-toss,

And lose, and start again at your beginnings

And never breathe a word about your loss;

If you can force your heart and nerve and sinew

To serve your turn long after they are gone,

And so hold on when there is nothing in you

Except the Will which says to them: ‘Hold on!’

If you can fill the unforgiving minute

With sixty seconds’ worth of distance run,

Yours is the Earth and everything that’s in it . . .

(From “If” — Rudyard Kipling)

The moon smiles bright as if,

she finds a truth as is,

for at night, souls all raw she sees,

that the Soul in his art,

is none but his Soul apart . . .

(“Soul” — mmmr)



CHAPTER 1

Introduction

Owing to the light-weightedness of today’s cameras, motion blur is an ubiquitous phe-

nomenon in hand-held photography. Motion blur is caused by relative motion between

camera and scene during the exposure interval. Specifically, a motion blurred image is

formed by aggregation of different world-to-sensor projections of the scene, over the

exposure interval, onto the image sensor. One solution to reduce blur is by lowering

the exposure interval. However, this is not typically preferred due to the inherent noise

in imaging; moreover, this solution is seldom practical in low-light scenarios or small-

aperture imaging common in mobile-phones and light field cameras. The challenging

problem of blind motion deblurring (BMD) deals with estimating a clean image from a

motion blurred observation, without any knowledge of scene and camera motion. Since

most computer vision works are designed for blur-free images and blur derails most of

these tasks (Kupyn et al., 2018; Vasiljevic et al., 2016; Dodge and Karam, 2016), BMD

is a continuing research endeavour.

Recently, there has been a popular trend in employing cameras beyond conventional

cameras (CCs) in order to have additional benefits and functionalities. For instance,

most present-day cameras are equipped with rolling shutter sensors, which employ a

row-wise world-to-sensor projection of the scene (different from that of concurrent

projection in CC), in order to increase frame-rate and to reduce power consumption

and cost. Yet another example is that of popular light field cameras and unconstrained

dual-lens cameras popularized by today’s mobile-phones, which capture multiple im-

ages (as opposed to a single image in CC) so as to obtain depth information and to

enable post-capture refocusing and f-stoping. Motion blur is a pertinent problem in

these non-conventional cameras as well, but it manifests in a different form.

Blind motion deblurring is a well-studied topic in CC, replete with several models

and methods. However, these works are not applicable to the non-conventional cameras

due to their different imaging mechanism or world-to-sensor projections. Moreover,

as the image information in non-conventional cameras is utilized for extended func-

tionalities, a BMD method for these cameras has to ensure that it does not degrade the



(a) I/p (b) Blurred: O/p (c) Deblurred: O/p
(a) Blurred: O/p (a) Deblurred: O/p

(1) Semantic Segmentation (2) Object Detection

(a) Rolling shutter blurred image (b) Ours deblurred (c) Blurred: O/p (d) Deblurred: O/p

(3) Single Image Depth Estimation

Figure 1.1: Motion Deblurring as a pre-processing for high-level vision tasks: 1(a-c) Semantic
segmentation (Vasiljevic et al., 2016), where Fig. 1(c) shows that motion deblurring
enables better segmentation of semantic objects (e.g., bicycle and person). 2(a-b)
Object classification (Kupyn et al., 2018) where the deblurred result in Fig. 2(b)
leads to enhanced detection. 3(a-d) Single image depth estimation using (Poggi
et al., 2018) from rolling shutter (RS) blurred image and RS deblurred image using
our method (Chapter 3). Comparing Figs. 3(c,d), motion deblurring leads to better
preservation of object boundaries (e.g., pillow and chair).

required information (e.g., scene-structure or depth cues). Finally, unlike CCs, light

field and dual-lens cameras capture multiple images of a scene; therefore correspond-

ing BMD methods have to tackle associated computational complexity in optimizing

for multiple clean images (as compared to only one image in CC-BMD).

1.1 Motivation and Objectives

The terrain of consumer cameras today spans beyond the conventional cameras. Apart

from the extended functionalities offered by the non-conventional cameras, the added

benefits of being lightweight, portable, and their adoption in standard imaging gadgets

(like mobile-phones) have brought these cameras to the forefront in the consumer mar-

ket. However, motion blur is difficult to avoid completely while capturing scenes using

hand-held devices. Motion blur has the detrimental effect of derailing the aesthetic

value of the captured images; in addition, most computer vision tasks warrant blur-free

inputs. Our work in this thesis attempts to address the problem of motion blur in differ-

ent non-conventional cameras, such as rolling shutter cameras, light field cameras, and
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unconstrained dual-lens cameras. Apart from restoring blurred images, the solutions

discussed here can serve as a potential preprocessing step for many computer vision

tasks based on these cameras, in order to extend their scope to handle ubiquitous mo-

tion blurred observations. This is illustrated in Fig. 1.1 for high-level vision tasks such

as semantic segmentation, object detection, and single image depth estimation. Next

we discuss the motivation and objectives of the problems addressed in this thesis.

Motion Deblurring for Rolling Shutter Cameras: Today, most cameras employ rolling

shutter (RS) sensors for higher frame-rate, extended battery life, and lower cost. As

compared to the concurrent exposure of sensor-rows in traditional global shutter cam-

eras, the sensor-rows in RS camera integrate light in a staggered manner. Therefore

under the effect of camera motion, each row in an RS sensor perceives different camera

motion, and hence different motion blur. As BMD methods for CC assume that motion

blur in all the image-rows are due to the same camera motion, those methods are not

applicable to RS cameras (Su and Heidrich, 2015).

Moreover, the state-of-the art method for RS-BMD (Su and Heidrich, 2015) has sev-

eral limitations. First, it is effective only for narrow-angle settings, whereas wide-angle

configuration is a prominent setting in most DSLR cameras, mobile phones and drones.

Second, the method warrants precise sensor timings for deblurring, which necessitates

camera calibration. Therefore, this method is not effective in deblurring arbitrary RS

images, e.g., images obtained from internet. Third, this method is limited to parametric

ego-motion derived primarily to characterize hand-held trajectories. Hence, it cannot

handle blur due to moving or vibrating platforms which are common in robotics, drones,

etc., where the ego-motion is typically irregular. Another significant limitation of this

method is its heavy computational cost, as compared to typical CC-BMD methods.

To this end, we introduce a motion blur model for RS, which resembles the global

shutter blur model but is expressive enough to capture the RS mechanism. Our model

acts as a bridge between well-studied CC-BMD and contemporary RS-BMD, in that

we propose to extend the scope of efficient techniques developed for the former to the

latter. Moreover, we identify a hindrance in readily applying the CC-BMD techniques

to RS-BMD; in particular, we show that there exists an ill-posedness in RS-BMD that

corrupts scene-information in the deblurred images. We address this ill-posedness using

a convex and computationally efficient prior. We show that RS deblurring using our
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model and prior achieves state-of-the-art results, and at the same time accommodates

narrow- and wide-angle settings, eliminates the need of camera calibration, can handle

irregular camera motion, and has a computationally efficient optimization framework.

Full-Resolution Light Field Deblurring: Of late, light field cameras (LFCs) have

became popular due to their attractive features over conventional cameras, such as post-

capture refocusing, f-stoping, and depth sensing. These features in LFCs are enabled

by capturing multiple images, each imaged through a portion of lens-aperture that is

open (e.g., 197 images in Lytro Illum), as compared to only a single image in

CCs. Due to this lens-division, image formation in an LFC is very different from that

of a CC, and hence the motion blur model and the BMD methods for CC fail for light

fields (Srinivasan et al., 2017). Furthermore, LFCs introduce an additional challenge in

deblurring that, unlike in CC or RS-BMD, calls for a method to deblur multiple images

using modest computational resources and within a reasonable processing time.

The state-of-the-art method for LF-BMD (Srinivasan et al., 2017) has some ma-

jor drawbacks. First, the method is too computationally intense that it is limited to

handle only down-sampled LFs for practical feasibility. Note that down-sampling the

LFs results in an inferior performance of its post-capture capabilities. Moreover, the

method considers for optimization a full light field altogether, which warrants GPU-

based processing and also leads to convergence issues. Further, this method is limited

to narrow-angle configuration and parametric camera motion.

To address these limitations, we introduce a new LF motion blur model which de-

composes the LF-BMD problem into independent subproblems (by isolating blur in

individual subaperture images or SAIs). Employing this model, we advocate a divide

and conquer strategy for LF-BMD; more specifically, we introduce a deblurring scheme

such that deblurring a single SAI greatly reduces the complexity in deblurring the re-

maining SAIs. Due to the independent nature of the subproblems, our methods can

deblur full-resolution light fields and eliminates the need of GPU-processing. Further,

light field deblurring based on our proposed motion blur model accommodates both

narrow- and wide-angle configurations, and irregular camera motions.

Deblurring for Unconstrained Dual-lens Cameras: The world of smartphones today

is experiencing a profilteration of dual-lens (DL) cameras so as to enable additional

post-capture renderings, which are achieved by utilizing depth cues embedded in the
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DL images. The cameras typically employed in DL-smartphones are of unconstrained

nature, i.e., the two cameras can have different focal lengths, exposure times and reso-

lutions. The problem of BMD in unconstrained DL cameras has additional challenges

over that of CCs. First, a DL set-up warrants deblurring based on depth, whereas CC-

BMD is oblivious to depth-cues. Therefore, any errors in depth can adversely affect DL

deblurring performance, and hence need to additionally address ill-posedness in depth,

if any. Second, any method for DL-BMD has to ensure scene-consistent depth in the

deblurred image-pair. We show that naively applying CC-BMD in unconstrained DL

set-up easily disrupts this depth consistency, thereby sabotaging the functionalities of

DL cameras. Also, the popular trend of including narrow-FOV camera in a DL set-up

amplifies the adverse effect of motion blur.

The existing BMD methods for DL and LF cameras are not effective for uncon-

strained DL: The state-of-the-art DL-BMD (Zhou et al., 2019; Xu and Jia, 2012) neces-

sitates a constrained DL set-up, i.e., two cameras need to work in synchronization and

share the same settings. Therefore, these methods are not applicable for unconstrained

DL cameras. Further, the method of (Xu and Jia, 2012) assumes that blur is primar-

ily caused by inplane camera-translations and warrants a layered depth scene, which

is seldom practical (Whyte et al., 2012). The light field BMD directly applied for the

problem of unconstrained DL-BMD also fails, as the LFC-BMD method assumes mul-

tiple images to share the same setting (which is inherent to LF cameras, but does not

hold good for unconstrained DL). Further, most LF-BMD methods warrant more than

two images for deblurring, but it cannot be supplied by unconstrained DL cameras.

As a first, we address the problem of BMD in unconstrained DL cameras. To this

end, we introduce a DL-blur model that seamlessly accommodates both unconstrained

and constrained DL configurations with arbitrary center-of-rotation (COR). Second,

we reveal an inherent ill-posedness present in DL-BMD that naturally disrupts scene-

consistent disparities. We address this using a convex prior on ego-motion. To eliminate

the difficulty in deblurring more than one image (as compared to that of CC-BMD), we

propose a decomposition of DL-BMD problem while enforcing our DL-prior, which

leads to a practical BMD method for today’s unconstrained DL cameras.

Dynamic Scene Deblurring for Unconstrained Dual-lens: Apart from camera mo-

tion, motion blur happens due to object motion as well. This renders those DL-BMD
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methods that restrict to only camera motion induced blur (as discussed in the previ-

ous portions) ill-equipped for several practical scenarios. Another important challenge

presented by today’s unconstrained DL genre is due to its different resolutions and ex-

posure times. This renders feature loss due to blur in the two views different, and

hence typical deblurring methods produce binocularly inconsistent deblurred image-

pairs. However, almost all computer vision methods for stereoscopic applications re-

quire the two views to be binocularly consistent.

The only-existing dynamic scene deblurring method for DL (Zhou et al., 2019) re-

stricts to constrained DL configuration. Therefore, the problem of binocular consistency

does not arise here and hence has not invoked. The BMD method we discussed before

for unconstrained DL (Mohan et al., 2019) also does not work for this problem as it

is restricted to blur induced by camera motion alone. Moreover, there was no attempt

to address the problem of view consistency. Typical strategy to address dynamic scene

deblurring is via a complex pipeline of segmenting independently moving objects, es-

timating relative motion in individual segments, and finally, deblurring and stitching

individual segments. Due to the presence of large number of unknowns, this approach

is computationally very intensive, and hard to optimize.

To alleviate this problem, we propose a deep learning based method for dynamic

scene deblurring in unconstrained DL cameras, a first of its kind. Our approach ac-

complishes this by learning a mapping from unrestricted DL data, that does not involve

complex pipelines and optimizations while deblurring. We propose three interpretable

modules optimized for unconstrained DL that effectively produce binocularly consistent

output images and address the space-variant and image-dependent nature of blur, which

altogether achieves state-of-the-art deblurring results for unconstrained DL set-up.

1.2 Contributions of the Thesis

The main contributions of this thesis can be summarized as follows:

Chapter 3: We introduce a new rolling shutter motion blur model, and based on the model
proposed an RS-BMD method which overcomes some of the major drawbacks of
the state-of-the-art method (Su and Heidrich, 2015), including inability to handle
wide-angle systems and irregular ego-motion, and the need for sensor data. We
also extend the efficient filter flow framework (Hirsch et al., 2010, 2011) to RS
deblurring, thereby achieving a speed-up of atleast eight.
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Chapter 4: By harnessing the physics behind light field (LF), we decompose 4D LF-BMD to
2D subproblems, which enables the first ever attempt of full-resolution LF-BMD.
This formulation bridges the gap between the well-studied CC-BMD and emerg-
ing LFC-BMD, and facilitates mapping of analogous techniques (such as MDF
formulation, efficient filter flow framework, and scale-space strategy) developed
for the former to the latter. Our proposed method dispenses with some important
limitations impeding the state-of-the-art (Srinivasan et al., 2017), such as high
computational cost and GPU requirement.

Chapter 5: As a first, we formally address BMD problem in unconstrained dual-lens config-
urations. We introduce a generalized DL blur model, that also allows for arbitrary
COR. Next, we reveal an inherent ill-posedness present in DL-BMD, that disrupts
scene-consistent disparities. To address this, we propose a prior that ensures the
biconvexity property and admits efficient optimization. Employing our model
and prior, we propose a practical DL-BMD method that achieves state-of-the art
performance. It ensures scene-consistent disparities, and accounts for the COR
issue (for the first time in BMD framework).

Chapter 6: For the first time in the literature, we explore dynamic scene deblurring in today’s
ubiquitous unconstrained DL camera. First, we address the pertinent problem of
view-inconsistency inherent in unconstrained DL deblurring, that forbids most
DL-applications, for which we propose an interpretable coherent-fusion module.
Second, our work reveals an inherent issue that disrupts scene-consistent depth in
DL dynamic-scene deblurring. To address this, we introduce an adaptive multi-
scale approach in deep learning based deblurring. Finally, we extend the widely
applicable atrous spatial pyramid pooling (Chen et al., 2017) to address the space-
variant and image-dependent nature of dynamic scene blur.

1.3 Organization of the Thesis

The rest of the thesis is structured as follows. Chapter 2 provides some technical back-

ground, which covers standard motion blur model and deblurring method of conven-

tional cameras and discuss different optimization techniques. In Chapter 3, we intro-

duce a rolling shutter motion blur model, and based on the model propose an RS-BMD

method that also incorporates a prior to alleviate the ill-posedness. Chapter 4 discusses

a full resolution light field deblurring method, based on divide and conquer strategy.

In Chapter 5, we propose a motion deblurring method for unconstrained dual-lens cam-

eras, which ensures scene-consistent depth while deblurring using a convex prior. Chap-

ter 6 extends motion deblurring for unconstrained dual-lens cameras (in Chapter 5) by

accommodating dynamic scenes as well, using a deep learning approach. We conclude

the thesis in Chapter 7 with some insights into future directions.



CHAPTER 2

Technical Background

The problem of blind motion deblurring (BMD) deals with estimating camera motion

and sharp photograph from a single blurred photograph. This problem can be divided

into two different parts: First, a motion blur model is required to relate the sharp pho-

tograph to the observed blurred photograph via camera motion parameters. Second,

employing this model, camera motion parameters and corresponding sharp photograph

have to be estimated. Since the (unknown) sharp photograph has the same number of

pixels as the (observation) blurry photograph, and camera motion parameters further

increase the unknown dimension, we clearly have more unknowns than observations.

Therefore, the problem of BMD is a heavily ill-posed problem, and the associated esti-

mations warrant priors for sharp image and camera motion.

The very first comprehensive study on BMD happened for conventional cameras

(CCs). Refer to (Rajagopalan and Chellappa, 2014) for a detailed survey on this area.

As our research topic of BMD for non-conventional cameras is not well explored,

whereas BMD for CCs is a well-studied area replete with efficient techniques, we in-

voke some mature concepts from CC-BMD which we discuss in this chapter. Specif-

ically, first we describe a standard motion blur model of CCs, which is followed by a

discussion on standard natural image priors and priors on camera motions, and conclude

with standard algorithms employed for sharp image and camera motion estimation.

2.1 Motion Blur Model for Conventional Camera

The initial works on BMD assume that motion blur is space-invariant, i.e., a blurred im-

age is modelled as the convolution of sharp image with a convolution kernel (Cho and

Lee, 2009; Yuan et al., 2017; Zhang et al., 2013; Wang et al., 2013; Zhu et al., 2012;

Sroubek and Milanfar, 2012). However, several later works showed that, in general,

motion blur due to 6D motion and 3D scenes are typically space-variant (i.e., convo-

lution kernel at each spatial locations are different). Since the high-dimensional 6D



Figure 2.1: Motion Density Function (MDF): Change in camera orientation from A to B is
equivalent to the relative change in world coordinate system (CS) from X to X′.
Thus, MDF, which gives the fraction of time the world CS stayed in different poses
during the exposure time, completely characterizes the camera motion.

camera pose-space leads to higher computational cost and convergence issues, current

methods consider a lower dimensional approximation. For instance, Gupta et al. (2010)

proposed a 3D approximation for general 6D camera pose-space by considering only

inplane translations and rotations, while Whyte et al. (2012) considered only 3D rota-

tions. Köhler et al. (2012) showed that both these 3D models are good approximations

to general pose-space. However, the model in (Whyte et al., 2012) is employed in most

deblurring algorithms (Pan et al., 2016; Xu et al., 2013) as it requires no depth informa-

tion unlike the model in (Gupta et al., 2010). (Note that estimating depth from a single

motion blurred image is heavily ill-posed (Hu et al., 2014).)

We now discuss a standard motion blur model for conventional cameras, proposed

by Whyte et al. (2012). Here, the CC is approximated as a pinhole at lens-center, and

camera motion is interpreted as stationary camera but with relative world motion (see

Fig. 2.1). Considering full-rotations approximation and a single camera pose change,

the relative change in world coordinate is given as

X′ = RX, (2.1)

where R is rotation matrix, and X = [X, Y, Z]T and X′ = [X ′, Y ′, Z ′]T are the 3D

world coordinates with respect to initial and final camera positions, respectively. For

the world pose-change in Eq. (2.1), a homography mappingH relates the corresponding

displacement in homogeneous image coordinates as

x′ = H(K,R,x), (2.2)
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where K is the camera matrix, and x and x′ are 2D image coordinates corresponding

to the initial and final camera positions. Note that homography mapping can be differ-

ent for different cameras in accordance with their imaging principles. For conventional

camera, the homography mapping is x′ = λKRK−1x, where K = diag(f, f, 1) where

f is the focal length, and λ normalizes the third coordinate of x′ to one (Hartley and Zis-

serman, 2003). Here, the resultant image L′ due to the world pose-change (in Eq. (2.1))

can be related to the initial image L as

L′ = L (K,R) , (2.3)

where L(K,R) performs warping of image L in accordance with Eq. (2.2). Thus a

general motion blurred image B (wherein camera experiences multiple pose-changes

over its exposure time) can be expressed as

B =
∑
p∈P

w(p) · L(K,RP), (2.4)

where Rp spans the plausible camera pose-space P and w(p0) is the motion density

function (MDF) which gives the fraction of exposure time the camera stayed in the pose

Rp0 (Fig. 2.1-right). Note that the MDF completely characterizes the camera-shake,

and can capture regular and irregular camera motion (as no particular camera-trajectory

path is imposed in MDF) (Whyte et al., 2012). Further, the consideration of full 3D

rotations in MDF accommodates both narrow-angle and wide-angle configurations (Su

and Heidrich, 2015).

Another important consideration is on how finely the rotational pose-space need to

be discretized. Undersampling the set of rotations will affect the ability to accurately

reconstruct the blurred image, but sampling it too finely warrants higher computational

costs for estimation. For example, as the kernel is defined over the three rotational

dimensions, doubling the sampling resolution increases the number of kernel elements

by a factor of eight, therefore the choice of sampling is important. It is shown in (Whyte

et al., 2012) that, in practice, a good choice of sample spacing is one which corresponds

approximately to a displacement of one pixel at the edge of the image. Since images

are fundamentally limited by their resolution, reducing further the sample spacing leads

to redundant rotations, that are indistinguishable from their neighbours.
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2.2 Image and Camera Motion Priors

As discussed earlier, the problem of BMD is inherently ill-posed. Therefore, a proper

estimation of unknowns requires additional priors on image and camera motion. Note

that the model in Eq. (2.4) admits a linear relation with the sharp image and MDF

individually, which is desirable to achieve a least square objective for the data-fidelity

term (assuming noise is additive white Gaussian). From Eq. (2.4), the optimization cost

for the unknowns clean image and camera motion can be obtained as

L = ‖Aw −B‖2
2 + Prior(L) + Prior(w),

where ‖Aw −B‖2
2 = ‖ML−B‖2

2.
(2.5)

where L is the clean image (in lexicographical form), and w is the vectorized form

of w(p) (where p is an element of the pose-space P3). The terms ‖Aw − B‖2
2 and

‖ML − B‖2
2 are the data fidelity terms, which are obtained from Eq. (2.4) as follows:

For MDF w, Eq. (2.4) enforces a linear relation via warp matrix A, wherein its ith

column contains the warped version of clean image L, with the pose of w(p). For clean

image L, Eq. (2.4) enforces a linear relation via PSF matrix M, wherein its ith column

contains the point spread function (PSF) corresponding to the ith coordinate (Whyte

et al., 2012; Xu et al., 2013). In what follows, we discuss the standard priors employed

for the sharp image and camera motion in order to address the ill-posedness in BMD.

2.2.1 Priors for Sharp Image

One of the most popular regularisers for sharp image is the sparse gradient prior, which

penalises the derivatives or gradients of the deblurred image. It is given as

Prior(L) = ‖∇L‖p (2.6)

where ∇L is the gradient of the image L. Algorithmically, ∇L is obtained by con-

volving the image with a first order horizontal and vertical filter which is implemented

as a matrix multiplication of the sharp image (since the convolution operation is linear

(Oppenheim and Schafer, 2014)). Though it is possible to extend the regularisation to

higher-order derivatives, this is not generally done in practice due to the added com-
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putational cost. Typically, the value of p is selected to be 1 and it is referred to as

total variation (TV) prior. The TV prior is convex and is shown to have excellent con-

vergence and efficient solvers (Perrone and Favaro, 2014), e.g., ADMM (Boyd and

Vandenberghe, 2004). It is to be noted that p less than one is also employed, but in that

case the prior becomes non-convex and difficult to optimize. For example, Krishnan

and Fergus (2009) advocate a p between 0.5 and 0.8, which is referred to as hyper-

Laplacian prior, whereas Levin et al. (2007) advocate the value of p to be 0.8, and Xu

et al. (2013) considers its value as 0.

2.2.2 Priors for Camera Motion

In the domain of camera pose-space, the camera motion is a 1D path that captures the

trajectory of the camera during its exposure interval. Based on this cue, there exist two

computationally tractable priors for MDF, i.e.,

Prior(w) = λ1‖w‖1 + λ2‖∇w‖0, (2.7)

such that w(p) ≥ 0 (as MDF components indicates the fraction of time, and hence

non-negative). The first component in Eq. (2.7) is a sparsity prior on the MDF val-

ues. While blur kernels in the 2D image space appears quite dense, it is shown that a

1D camera path represents an extremely sparse population in the higher dimensional

MDF space (Gupta et al., 2010). Therefore, the l1 regularisation combined with non-

negativity constraints encourages the optimization to find a sparse MDF and is more

likely to choose between ambiguous camera orientations, in contrast with spreading

non-zero values across all orientations. The second component is a smoothness prior

on the MDF, which incorporates the concept of the MDF representing a path, as it en-

forces continuity in the space and captures the cue that a given pose is more likely if its

nearby pose is likely. As discussed in image priors, the optimization with the second

term incurs heavy computational cost for MDF estimation (and there exists no stan-

dard optimization framework when both the priors are included). Therefore the current

methods predominantly use only the first component (Pan et al., 2016; Xu et al., 2013;

Whyte et al., 2012). As we will see in the next section, the resultant optimization for

MDF leads to a well-studied, computationally efficient solver.
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2.3 Motion Deblurring for Conventional Cameras

Blind motion deblurring in conventional cameras typically proceeds by alternating min-

imization (AM) of MDF w and sharp image L, i.e., iteratively optimize for the one

unknown assuming that the other quantity is known, in an alternating fashion. Also,

the AM proceeds in a scale-space manner to accommodate large blurs while keeping

the optimization dimension low (Whyte et al., 2012), i.e., MDF estimation starts with

a downsampled blurred image where the MDF-dimension is less, and proceeds to finer

scale MDF-estimation by leveraging the sparsity of the previous estimate. To be spe-

cific, MDF at the original resolution may have thousands or tens of thousands of el-

ements. However, due to the sparse nature of MDF a very few of these should have

non-zero values. Solving for the full-dimensional MDF is not desirable as it leads to

significant amounts of redundant computation, since most of the MDF entries will cor-

respond to zeros. Instead by proceeding in a scale-space, one can restrict the support of

the pose-space of higher scales as the dilated support of the MDF estimated at a lower

scale. We now discuss the estimation techniques of MDF and latent image.

2.3.1 Estimation of Camera Motion

In AM, assuming that the sharp image is known, the MDF estimation is given as

ŵ = min
w
‖Aw −B‖2

2 + λ1‖w‖1 : w(p) ≥ 0, (2.8)

where we have employed sparsity prior for MDF. This is an instance of the Lasso (least

absolute shrinkage and selection operator) problem (Tibshirani, 1996), for which ef-

ficient optimisation algorithms exist ((Efron et al., 2004)). More important, this is a

convex problem, so that we can be sure of attaining a global minimum. For the coars-

est scale, the sharp image is initialized as the shock-filtered blurred image, and in all

other levels the previous estimate of sharp image is employed to frame the MDF cost

(in Eq. (2.8)). Also, it is a common practice in deblurring algorithms to frame the MDF

cost in the gradient domain for faster convergence and to reduce ill-conditionness (Xu

et al., 2013; Whyte et al., 2012; Cho and Lee, 2009; Hirsch et al., 2011).

It is to be noted that there exist methods that use l2 prior on MDF (instead of the
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l1 prior) (Cho and Lee, 2009), but it is shown in (Whyte et al., 2012) that the resultant

estimate is highly non-sparse, and the deblurred result with this MDF exhibits many

artifacts as compared to the result of l1.

2.3.2 Estimation of Clean Image

Assuming that the MDF is known (which is considered as the MDF estimate in the

previous iteration), the sharp image estimation is obtained using Eq. (2.5) as

L̂ = min
L
‖ML−B‖2

2 + ‖∇L‖1, (2.9)

where the TV natural image prior is employed (Whyte et al., 2012). Note that the

optimization in Eq. (2.9) is a convex problem, and hence guarantees a global minima.

Also, Eq. (2.9) is in a standard form encountered in many restoration tasks (such as

super-resolution, deblurring, and denoising) and can be effectively solved using ADMM

(Boyd and Vandenberghe, 2004). However, as motion deblurring proceeds in a scale-

space manner (as discussed earlier), the creation of matrix M after every update of MDF

and optimizing for a high-dimensional sharp image using TV prior for every scale and

every iteration is not computationally efficient. To alleviate this problem, there exists

simplified, efficient framework for sharp image estimation, which is discussed next.

Efficient Filter Flow: Hirsch et al. (2010) showed that motion blur in practice varies

slowly and smoothly across the image. As a result, the PSFs of nearby pixels can be

very similar, and hence it is reasonable to approximate spatially-variant blur as being

locally-uniform. Following this finding, Hirsch et al. (2010) advocated a simplified

forward motion blur model, wherein the sharp image is covered with a coarse grid of

overlapping patches, each of which is modelled as having a spatially-invariant blur. The

overlap between patches enforces the smoothly varying nature of motion blur across

the image, rather than blur changing abruptly between neighbouring patches. As each

patch has a spatially-invariant blur, the forward model translates to computing N small

convolutions as follows:

B =
N∑
k=1

C†k ·
{
h(k) ∗ (Ck · L)

}
, (2.10)
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where N is the total number of overlapping patches in latent image L, k is the patch-

index, Ck · L is a linear operation which extracts the kth patch from L, and C†k inserts

the patch back to its original position with a windowing operation. The h(k) represents

blur kernel or point spread function (PSF) which when convolved with the kth latent

image-patch produces the corresponding blurred patch. Given the MDF (w) and the

homography mapping, the PSF for the kth patch is obtained as

h(k) =
∑
p∈P

w(p) · hk(p), (2.11)

where hk(p) is a shifted impulse obtained by transforming with pose p an impulse

centered at the kth patch-center. Since hk(p) is independent of the latent image and the

MDF, it needs to be computed only once, and can be subsequently used to create the

blur kernel in patch k for any image and hence leads to large computational gain.

The blur model in Eq. (2.10) admits a simplified image estimation framework, i.e.,

L =
N∑
k=1

C†k · F
−1

(
1

F(h(k))
� F(Ck ·B)

)
, (2.12)

where F and F−1 are the forward and inverse FFT, respectively, and � is a point-wise

multiplication operator. Note that this approach is computationally efficient, as no opti-

mization with costly prior is required. This inversion is typically employed at all scales

and iterations except at the finest scale, final iteration. The reason is that Eq. (2.12)

does not use any prior for sharp images, and as the ego-motion estimation is based on

image gradients, only the latent-image gradient information needs to be correctly es-

timated (which does not necessitate computationally expensive priors) (Cho and Lee,

2009; Hirsch et al., 2011; Whyte et al., 2012). However, this is not valid for the final

scale, final iteration where the image information (and not the image-gradient) is im-

portant, and hence one typically resorts to optimization-based methods (e.g., TV-based

method discussed in Eq. (2.9) or Richarson-Lucy method (Lucy, 1974)).
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CHAPTER 3

Motion Deblurring for Rolling Shutter Cameras

3.1 Introduction and Related Works

1 Complementary metal oxide semiconductor (CMOS) sensor is winning the camera

sensor battle as it offers advantages in terms of extended battery life, lower cost and

higher frame rate, as compared to the conventional charge coupled device (CCD) sensor

(Litwiller, 2001). Nevertheless, the annoying effect of motion blur that affects CCD

cameras prevails in common CMOS rolling shutter (RS) cameras too, except that it

manifests in a different form (Su and Heidrich, 2015).

The problem of blind motion deblurring (BMD) – i.e., recovery of both the clean

image and underlying camera motion from a single motion blurred image – is an ex-

tensively studied topic for CCD cameras. In CCD cameras, the standard motion blur

method used by the state-of-the-art deblurring methods is that of (Whyte et al., 2012),

where the 6D camera pose-space (i.e., 3D translations along XYZ directions and 2D

out-of-plane rotations (yaw and pitch) and inplane rotations (roll)) is approximated by

only 3D rotations. To reduce the ill-posedness of BMD, a recent trend is to introduce

novel priors. Some representative works in this direction include natural image priors

such as total variation (TV) (Perrone and Favaro, 2014), L0 sparsity (Xu et al., 2013)

, and dark channel prior (Pan et al., 2016). In particular, TV enforces sparsity in the

gradient-map of images which is a characteristic of natural images, via a convex cost;

Xu et al. (2013), instead of explicitly extracting gradients, incorporate a new regular-

ization term consisting of a family of loss functions to approximate the L0 cost into

the objective, which, during optimization, leads to consistent energy minimization and

accordingly fast convergence; in contrast, (Pan et al., 2016) is based on the observa-

tion that while most natural clean image patches contain some dark pixels, these pixels

are not dark when averaged with neighbouring high-intensity pixels during the blurring

1Based on: Going Unconstrained with Rolling Shutter Deblurring Mahesh Mohan M. R., Ra-
jagopalan A. N., and Gunasekaran Seetharaman.; ICCV 2017, IEEE Publications, Pages 4010–4018.



process. Ego-motion priors include Tikhonov regularization (Hirsch et al., 2011), and

sparsity (Whyte et al., 2012; Gupta et al., 2010) and continuity (Gupta et al., 2010) in

pose-space. Another important research direction in BMD is towards reducing com-

putational complexity. Cho and Lee (2009) address this by utilizing the FFT for space

invariant blur (Note that FFT-inversion is quite fast and efficient as compared to spatial

domain inversion of convolution). Hirsch et al. (2011, 2010) extend this to the space-

variant case by approximating motion blur as space invariant over small image-patches,

and show competitive quality with significant speed up.

However, the aforementioned deblurring methods proposed for CCD cameras are

not applicable to CMOS-RS (Su and Heidrich, 2015) since the RS motion blur forma-

tion is strikingly different as illustrated in Fig. 3.1(left). CCD camera uses a global

shutter (GS), whereas CMOS cameras predominantly come with an electronic RS. In

contrast to GS in which all sensor elements integrate light over the same time window

(or experience the same camera motion), each sensor row in RS integrates over different

time window, and thus a single camera motion does not exist for the entire image. To the

best of our knowledge, only three works specifically address motion deblurring in RS

cameras – (Tourani et al., 2016) for depth camera videos, (Hu et al., 2016) for hardware

assisted deblurring, and the BMD method of (Su and Heidrich, 2015). Tourani et al.

(2016) use feature matches between depth maps to timestamp parametric ego-motion.

However, they require multiple RGB-depth images as input. Also, blurred RGB images,

unlike depth maps, lack sufficient feature matches for reliable ego-motion estimation,

which limits their functionality (Tourani et al., 2016). In contrast, Hu et al. (2016) use

smartphone inertial sensors for timestamping and is thus a non-blind approach. Fur-

thermore, it is device-specific and the cumulative errors from noisy inertial sensors and

calibration govern deblurring performance (Hu et al., 2016).

The current state-of-the-art RS-BMD (Su and Heidrich, 2015) eliminates device-

specific constrains of (Hu et al., 2016; Tourani et al., 2016), and estimates timestamped

ego-motion solely from image intensities. However, the method is limited to paramet-

ric ego-motion derived specifically for hand-held blur. This renders it difficult to handle

blur due to moving/vibrating platforms, such as in robotics, drones, street view cars

etc. Second, wide-angle systems provide a larger field-of-view as compared to narrow-

angle lenses, an important setting in most DSLR cameras, mobile phones and drones.

This is illustrated in Fig. 3.1(right) using focal-length settings of some popular CMOS
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Figure 3.1: (Left) Working principle of CMOS-RS and CCD sensors (i.e., row-wise exposure
versus concurrent exposure). (Right) Focal lengths of some popular CMOS devices.
Note the wide-angle setting predominant in cell-phone and drone cameras.

imaging devices. It is evident from the figure that wide-angle configurations are in-

deed important in photography (the primary setting of cell-phones and drone cameras).

However, the state-of-the-art RS-BMD (Su and Heidrich, 2015) works only for narrow-

angle settings. This is so as to provide a good initialization in (Su and Heidrich, 2015)

by discarding inplane rotations, which precludes it from dealing with wide-angle sys-

tems. The reason is illustrated in Fig. 3.2 with two different PSFs generated by a real

ego-motion (using (Köhler et al., 2012)) in a wide-angle system with and without the

inplane rotation, which clearly reveals the inefficacy of their approximation. Another

significant limitation of current RS deblurring methods (Su and Heidrich, 2015; Hu

et al., 2016; Tourani et al., 2016) is their huge computational load. Moreover, meth-

ods (Su and Heidrich, 2015; Hu et al., 2016) require as input precise sensor timings

tr and te during image capture in order to fragment the estimated ego-motion corre-

sponding to each image-row (see Fig. 3.1(left)). Other RS related works include RS

super-resolution (Punnappurath et al., 2015), RS image registration (Rengarajan et al.,

2016), RS structure from motion (Ito and Okatani, 2017), etc.

In this chapter, we propose an RS-BMD method that not only delivers excellent

deblurring quality but is also computationally very efficient. It works by leveraging

a generative model for RS motion blur (different from the one commonly employed),

and a prior to disambiguate multiple solutions during inversion. Deblurring with our

scheme not only relaxes the constraints associated with current methods, but also leads

to an efficient optimization framework.

Our main contributions are summarized below.

• Our method overcomes some of the major drawbacks of the state-of-the-art method

18



(a1) (b1)

(a2) (b2)

(a) With inplane rotations (b) Without inplane rotations (c) Patches of (a) and (b)

Figure 3.2: Effect of inplane rotation for a wide-angle system: (a) Blur kernels (or PSFs) with
inplane rotation and (a1-a2) shows its two PSFs magnified (b) Blur kernels without
inplane rotation and (b1-b2) shows the corresponding two PSFs. Note the variation
in shape of the PSFs between (a1-a2) and (b1-b2).

(Su and Heidrich, 2015), including inability to handle full 3D rotations (or wide-
angle systems) and irregular ego-motion, and the need for sensor data.

• We extend the computationally efficient filter flow (EFF) framework that is com-
monly employed in CCD-BMD (Hirsch et al., 2010, 2011) to RS-BMD. Relative
to (Su and Heidrich, 2015), we achieve a speed-up by a factor of at least eight.

• Ours produces state-of-the-art RS deblurring results for narrow- as well as wide-
angle systems and under arbitrary ego-motion, all of these sans sensor timings.

3.2 RS Motion Blur Model

In this section, we discuss the generative model for RS motion blur. As mentioned

earlier, the entire image in CCD or global shutter (GS) cameras experiences the same

ego-motion. Thus the motion blurred image B ∈ RM×N in a GS sensor is generated

by integrating the images seen by the camera along its trajectory during the exposure

duration [0, te] (Su and Heidrich, 2015). It is given by

B =
1

te

∫ te

0

Lp(t)dt, (3.1)

where p(t0) represents the general 6D camera pose at time instant t0, Lp(t0) is the latent

image L transformed according to the pose p(t0), and te is the shutter speed.

In contrast, each RS sensor-row can experience different ego-motion due to its stag-

gered exposure windows (Fig. 3.1). Hence, unlike CCD, we cannot associate a global

warp for the entire latent image L, but need to consider each row separately. Image row
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Bi (subscript i indicates ith row) of an RS blurred image B = [B1
T B2

T · · · BM
T ]T is

given by

Bi =
1

te

∫ (i−1)·tr+te

(i−1)·tr
L

p(t)
i dt : i ∈ {1, 2, · · ·,M}, (3.2)

where L
p(t0)
i is the ith row of the transformed image Lp(t0), te is the shutter speed or

row-exposure time in CMOS sensors, and tr is the inter-row delay. All the current RS

deblurring methods use a discretized form of Eq. (3.2) as the forward model, and we

refer to this as temporal model.

An equivalent representation of Eq. (3.2) can be obtained by a weighted integration

of the transformed image-rows over camera poses, where the weight corresponding to a

transformed image-row with a specific pose determines the fraction of the row-exposure

time (te) that the camera stayed in the particular pose. This is given by

Bi =

∫
P

w′i(p) · Lp
i dp : i ∈ {1, 2, · · ·,M}, (3.3)

where P is the continuous camera pose-space andw′i(p0) is the weight corresponding to

the transformed row Lp0

i . Unlike existing RS deblurring works, we employ the second

model and discretize the pose-space in Eq. (3.3). We consider the discretization step-

size to be such that there is less than one pixel displacement between adjacent poses.

Thus Eq. (3.3) reduces to

Bi =
∑
p∈P

wi(p) · Lp
i : i ∈ {1, 2, · · ·,M}, (3.4)

where P is the discretized pose-space P, and the discrete weight wi(p0) is the summa-

tion of all the continuous-weights w′i(p) for all p that lie in the half step-size neigh-

bourhood of pose p0. We identify the weights wi(p) as the motion density function

(MDF), as in (Gupta et al., 2010). We further modify Eq. (3.4) based on an important

observation derived from typical CMOS sensor settings.

Observation: In RS motion blurred images, there exists an rb :1 << rb ≤ M , such

that any block of contiguous rows with size less than or equal to rb will have substantial

camera-pose overlap.

In RS sensors, the fraction of camera-pose overlap in r contiguous rows is equal to

the fraction of the time shared among those rows. Thus, from the RS timing diagram in
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Figure 3.3: (a) Percentage pose-overlap Γ over block-size r for standard CMOS-RS shutter
speed (te) and an inter-row delay (tr) of 1/100 ms, along with optimal block-size.
(b) A blurred patch from an RS blurred image (Fig. 3.9); (c & d) Corresponding
patch of deblurred results without and with our RS prior.

Fig. 3.1, the percentage camera-pose overlap Γ in a block of r rows is obtained as

Γ(r) = max

(
te − (r − 1) · tr

te
, 0

)
· 100. (3.5)

In Fig. 3.3(a), we plot Γ(r) for varying te and a fixed tr of 1/100 ms – a typical CMOS

sensor has standardized te as {1/1000 s, 1/500 s, · · · 1 s}, and tr in the range 1/200 ms

to 1/25 ms (Gu et al., 2010). It is evident from the figure that such a block-wise segre-

gation is possible for these standard settings with camera-pose overlap of almost 80%.

We do note that for faster shutter speed (e.g., te < 1/250 s) rb can be close to one; but

for that setting motion blur will be negligible.

Based on this observation, we approximate each non-intersecting block of rb rows

that have substantial camera-pose overlap to be governed by an individual MDF. We

will later show that this approximation is reasonable for RS motion blurred images.

Thus our forward RS motion blur model is given by

Bi =
∑
p∈P

wi(p) · Lp
i : i ∈ {1, 2, · · ·, nb}, (3.6)

where nb = M/rb is the total number of blocks, the blurred image B has structure

[B1
T ,B2

T , · · ·Bnb

T ] with Bi as the ith block (bold subscript represents block), wi(p)

is the approximated MDF of ith block, and Lp0

i is the ith block of the transformed image

L with pose p0. Note that for rb = M , Eq. (3.6) reduces to CCD motion blur model

(Pan et al., 2016; Xu et al., 2013; Whyte et al., 2012; Hirsch et al., 2011; Gupta et al.,
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2010). We identify Eq. (3.6) as our RS pose-space model. This is unlike the temporal

model of (Su and Heidrich, 2015) which constrains the motion model to be parametric.

Therefore, our model can accommodate different kinds of motion trajectories including

camera shake and vibrations.

3.3 RS Deblurring

We formulate a maximum a posteriori (MAP) framework for estimation of both the

latent image and the block-MDFs. In this section, we bring out an ill-posedness in

RS-BMD and introduce a new prior to address this.

A direct MAP framework for unknown θ = {L,wi : 1 ≤ i ≤ nb} is given as

θ̂ = min
θ

nb∑
i=1

‖(Bi −
∑
p∈P

wi(p) · Lp
i ‖2 + λ1‖∇L‖1

+λ2

nb∑
i=1

‖wi‖1,

(3.7)

where wi is the vector containing weights wi(p) for poses p ∈ P and∇L is the gradient

of L. We assume that the optimal block-size rb is known (we relax this subsequently in

section 3.5.1). The first term in the objective in Eq. (3.7) is data fidelity that enforces

our forward blur model of Eq. (3.6). To reduce ill-posedness, we too enforce a sparsity

prior on the image-gradient following (Whyte et al., 2012; Gupta et al., 2010). We

also impose a sparsity prior on the MDF weights since a camera can transit over only

few poses in P during exposure. In the literature on CCD deblurring (i.e., nb = 1) it

is well-known that the objective in Eq. (3.7) is biconvex, i.e., it is individually convex

with respect to the latent image and MDF, but non-convex overall; and convergence to a

local minima is ensured with alternative minimization of MDF and latent image (Whyte

et al., 2012; Gupta et al., 2010; Cho and Lee, 2009). However, RS sensors introduce a

different challenge if Eq. (3.7) is directly considered (Fig. 3.3(c)).

Claim 1: For an RS blurred image, there exist multiple solutions for the latent image-

MDF pair in each individual image-block. They satisfy the forward model in Eq. (3.6)

and are consistent with the image and MDF prior in Eq. (3.7).

Before giving a formal proof, we attempt to provide some intuition. Considering
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Figure 3.4: Illustration of block-wise latent image-MDF pair ambiguity for a single inplane ro-
tation (only 1D pose-space). Both solution-pairs 1 and 2, though entirely different,
result in the same blurred block Bi.

only inplane rotations, Fig. 3.4 illustrates a multiple-solution case where one latent

image-block (of solution-pair {L′i,w′i}) is rotated anti-clockwise and the second image-

block (of solution-pair {L′′i ,w′′i }) is rotated clockwise, but both result in the same input

image-block Bi. This can also be visualized as a natural escalation of the notion of

shift-ambiguity in patch-wise PSF estimates (Paramanand and Rajagopalan, 2013) all

the way to block-wise MDFs.

Proof: Let Bi be an RS blurred block formed by latent image L and MDF wi through

Eq. (3.6). We form a second RS blurred block B′i by considering a nonzero pose p0 ∈ P

as

B′i =
∑
p′∈P

wi(p0 + p′) · Lp0+p′

i , (3.8)

where Lp0+p′

i is the ith block of the transformed version of Lp0 with pose p′, and

wi(p0 + p′) is obtained by shifting wi(p′) with a negative offset of p0. Even though

the latent image-MDF pairs for Bi and B′i are different, i.e., {L, wi(p)} in Eq. (3.6),

and {Lp0 , wi(p0 + p)} in Eq. (3.8), we shall prove that both Bi and B′i are equal.

Construct a set SBi with elements as all individual additive components of Eq. (3.6) that

add up to get Bi. Similarly, form set SB
′
i with all additive components of Eq. (3.8). Any

element in SBi is represented as a singleton {wi(p) ·Lp
i } with p ∈ P. The same element

is present in SB
′
i, i.e., at p′ = −p0 +p in Eq. (3.8), which implies SBi ⊆ SB

′
i. Similarly

by considering p = p0 +p′ in Eq. (3.6), it follows that SB
′
i ⊆ SBi. Since SBi ⊆ SB

′
i and

SB
′
i ⊆ SBi, both the sets are equal, and so are Bi and B′i. Also, as the latent images L

and Lp0 are related by a global warp, the sparsity in gradient domain (i.e., image prior

in Eq. (3.7)) is valid for both. Since both the MDFs have equal weight distribution, the

sparsity in weights (i.e., MDF prior) is also identical for both. Hence proved. �

If we consider Eq. (3.7) alone for RS deblurring, this ambiguity can cause the latent
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image portion of individual block to transform independently (see Fig. 3.4). This can

result in an erroneous estimate of the deblurred image, where the latent image portions

corresponding to different blurry blocks are incoherently combined (Fig. 3.3(c)). To

address this issue, we introduce an additional prior on the MDFs as

prior(w) =

nb∑
i=1

nb∑
j>i

‖Γ (rb(j− i + 1)) · (wi −wj)‖2
2, (3.9)

where Γ (rb · (j− i + 1)) is the percentage overlap (Eq. (3.5)) of all groups of blocks

between (and including) the ith and jth block, and w is a vector obtained by stacking all

the unknown MDFs {wi : 1 ≤ i ≤ nb}. This prior restricts drifting of MDFs between

neighbouring blocks (i.e., high cost), but allows MDFs to change between distant blocks

(i.e., low cost). It also serves to impart an additional dependency between block MDFs

which Eq. (3.7) does not possess. This helps to reduce the ill-posedness of ego-motion

estimation.

Claim 2: The prior in Eq. (3.9) is a convex function in w, and can be represented as a

norm of matrix vector multiplication, i.e., as ‖Gw‖2
2, with sparse G.

To prove this, we draw from the following well-known properties of convex func-

tion (Boyd and Vandenberghe, 2004) which are a linear function is always convex

(prop. 1), composition of convex functions with a non-decreasing function is always

convex (prop. 2), and non-negative sum of convex functions is convex (prop. 3).

Proof: Considering nb number of image blocks and each block-MDF wi having length

l, an individual additive component in our RS prior (in Eq. (3.9)) can be represented

as ‖Γ (rb(j− i + 1)) · S(i,j)w‖2
2, where S(i,j) is a matrix of dimension l × nb · l, with

all zeros except two scaled identity matrices of dimension l × l corresponding to ith

TSF (with scale 1) and jth TSF (with scale−1). Therefore, the term {Γ (rb(j− i + 1)) ·

S(i,j)w} is a linear function in w. Since ‖Γ (rb(j− i + 1)) · S(i,j)w‖2
2 is a composite

of squared L2 norm (which is non-decreasing) of a linear function in w, each additive

component is convex (props. 1 and 2). Resultantly, the sum of all additive components

in Eq. (3.9), i.e., prior(w), is a convex function in w (prop. 3). Further, prior(w) can be

represented as ‖Gw‖2
2, where matrix G is obtained by vertically concatenating matrices

{Γ (rb(j− i + 1)) · S(i,j)} corresponding to the individual additive component in RS

prior. Since S(i,j) is a sparse matrix, G will also be sparse. Hence proved. �
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Thus inclusion of the prior does not alter the biconvexity of Eq. (3.7) (which is

necessary for convergence), and paves the way for efficient implementation (as we shall

see in section 3.4.2). We identify Eq. (3.9) as our proposed RS prior.

3.4 Model and Optimization

State-of-the-art CCD-BMD methods (Pan et al., 2016; Xu et al., 2013; Whyte et al.,

2012; Cho and Lee, 2009) work by alternative minimization (AM) of MDF and latent

image over a number of iterations in a scale-space manner, (i.e., AM proceeds from

coarse to fine image-scale in order to handle large blurs). As we shall see shortly,

this requires generation of blur numerous times. Efficiency of the blurring process is

a major factor that governs computational efficiency of a method. In this section, we

first discuss how our pose-space model allows for an efficient process for RS blurring

(analogous to CCD-EFF (Hirsch et al., 2011, 2010)). Next, we elaborate on our AM

framework, and eventually relax the assumption of the need for sensor information.

3.4.1 Efficient Filter Flow for RS blur

Following (Hirsch et al., 2010), we approximate motion blur in individual small image

patches as space invariant convolution with different blur kernels. We represent this as

B =
R∑
k=1

C†k ·
{
h(k,b(k)) ∗ (Ck · L)

}
, (3.10)

where R is the total number of overlapping patches in latent image L, b(k) is a function

which gives the index of the block to which the major portion of the kth patch belongs

(i.e., b(k) ∈ {1,2, · · ·nb}), Ck·L is a linear operation which extracts the kth patch from

L, and C†k inserts the patch back to its original position with a windowing operation.

h(k,b(k)) represents the blur kernel which when convolved with the kth latent image-

patch creates blurred patch. Considering b(k) as j, we can write

h(k,b(k)) =
∑
p∈P

wj(p) · δk(p), (3.11)
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where δk(p) is a shifted impulse obtained by transforming with pose p an impulse cen-

tered at the kth patch-center. Intuitively, the blur kernel at patch k due to an arbitrary

MDF is the superposition of the δk(p)s generated by it. Since δk(p) is independent

of the latent image and the MDF, it needs to be computed only once, and can be sub-

sequently used to create the blur kernel in patch k for any image. Thus, given a latent

image L and MDF of each block, our blurring process first computes kernels inR patch-

centres using the precomputed δk(p) (Eq. 3.11), convolves them with their correspond-

ing latent-image patches and combines them to form the RS blurred image (Eq. (3.10)).

We carry out convolution using the efficient fast Fourier transform (FFT). Note that the

CCD-EFF is a special case of Eq. (3.10) under identical MDFs (wi = w ∀i) or the

single block case (nb = 1). We next discuss our AM at the finest level. The same

procedure is followed at coarser levels and across iterations.

3.4.2 Ego-Motion Estimation

The objective of this step is to estimate the ego-motion at iteration d + 1 (i.e., wd+1)

given the latent image estimate at iteration d (i.e., L(d)). We frame our MDF objective

function in the gradient domain for faster convergence and to reduce ill-conditionness

(Xu et al., 2013; Whyte et al., 2012; Cho and Lee, 2009; Hirsch et al., 2011). We give

it as

wd+1 = arg min
w
‖Fw −∇B‖2

2 + α‖Gw‖2
2 + β‖w‖1, (3.12)

where the information of the gradient of L(d) is embedded in blur matrix F,∇B is the

gradient of B, and ‖Gw‖2 is the prior we introduce for RS blur (Eq. 3.9). We further

simplify the objective in Eq. (3.12) by separating out the sparsity prior as a constraint

and taking the derivative (similar to (Whyte et al., 2012)). This yields

wd+1 = arg min
w
‖(FTF + αGTG)w − FT∇B‖2

2

such that ‖w‖1 ≤ β′.

(3.13)

A major advantage of our pose-space model over the temporal model of Eq. (3.2) is that

we can formulate ego-motion estimation as in Eq. (3.13). This is least absolute shrink-

age and selection operator (LASSO) (Tibshirani, 1996) of the form arg minx ‖Ax −

b‖2 : ‖x‖1 ≤ γ, and has efficient solvers (least angle regression or LARS (Efron et al.,
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2004)). Since LASSO needs no initialization, we can account for inplane rotations too.

This allows us to handle even wide-angle systems unlike (Su and Heidrich, 2015), which

discards it to eliminate the back-projection ambiguity of blur kernels for initialization.

Suppose a blurred image of size M × N and nb number of MDFs of length l (i.e.,

block-size rb = M/nb). Then the dense matrix F in Eq. (3.13) is nb times larger

compared to the CCD case. This escalates the memory requirement and computational

cost for RS deblurring; i.e., a naive approach to create FTF (with size nb · l × nb · l)

is to form a large matrix F of size MN × nb · l (where MN >> nbl), and perform

large-matrix multiplication. We avoid this problem by leveraging the block-diagonal

structure of F, and thus for FTF, that is specific for RS blur. The jth column of the ith

block-matrix Fi of F (of size rbN × l) is formed by transforming∇L(d) with the pose

of wi(j), and vectorizing its ith block. For this, we employ the RS-EFF. Since each Fi

can be generated independently, we bypass creating F, and instead directly arrive at the

block-diagonal matrix FTF, one diagonal-block at a time, with the jth block as Fj
TFj.

A similar operation is also done for FT∇B. Since G is sparse, GTG in Eq. (3.13) can

be computed efficiently (Yuster and Zwick, 2005).

3.4.3 Latent Image Estimation

Given the ego-motion at iteration d + 1 (i.e., wd+1), this step estimates the latent im-

age L(d + 1). As discussed in Ch. 2, since ego-motion estimation is based on image

gradients (Eq. (3.13)), only the latent-image gradient information needs to be correctly

estimated. This eliminates the use of computationally expensive image priors in the

alternative minimization step. We obtain the latent image by inverting the forward blur-

ring process in Eq. (3.10), i.e.,

L(d+ 1) =
R∑
k=1

C†k · F
−1

(
1

F(h(k,b(k)))
� F(Ck ·B)

)
, (3.14)

where h(k,b(k)) is generated using wd+1, F and F−1 are the forward and inverse FFT, re-

spectively, and� is a point-wise multiplication operator that also suppresses unbounded-

values. We combine patches using Bartlett-Hann window that tapers to zero near the

patch boundary. It has 70% overlap for patches that span adjacent blocks (to eliminate

the effect of sudden changes in MDFs), and 50% for the rest. It is important to note that
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explicit block-wise segregation of blurred image is employed only for MDF estimation

(to create FTF in Eq. (3.13)), and not for latent image estimation where the estimated

MDFs are utilized only to project PSFs in overlapping patches, akin to CCD-BMD

(Whyte et al., 2012; Hirsch et al., 2011, 2010). From a computational perspective, this

is equivalent to extracting each patch of the blurred image, deconvolving it with the

corresponding blur kernel (created using Eq. (3.11)) with FFT acceleration, and com-

bining the deconvolved patches to form the updated latent image. For the final iteration

(in the finest level), instead of FFT inversion (as in Eq. (3.14)), we adopt Richardson-

Lucy deconvolution which considers l2 based TV prior for latent image (Lucy, 1974).

(Figure 3.5 illustrates the working of our algorithm using some intermediate results).

3.5 Analysis and Discussions

3.5.1 Selection of Block-Size

In section 3.3, we had assumed the availability of sensor timings tr and te to optimally

segregate image-blocks (using Γ(r) in Eq. (3.5)) and to derive the RS prior (through Γ

in Eq. (3.9)). In this section, we quantify camera-pose overlap and relax the need for

sensor timings.

To analyse the effect of block-size rb, we conducted an experiment using real cam-

era trajectories from the dataset of (Köhler et al., 2012) with CCD blur. Since all the

rows would experience a common trajectory, ideally all block MDFs should match irre-

spective of the chosen number of blocks. We estimate MDFs without using the RS prior

(α = 0 in Eq. (3.13)), align their centroids, and use individual MDF to compute PSFs

in all R patches. The PSFs are then correlated with the ground-truth PSFs using the

kernel similarity metric in (Hu and Yang, 2012) (centroid alignment of MDFs was done

since correlation cannot handle arbitrary rotation between PSFs). We plot in Fig. 3.6(a)

average kernel similarity and time taken for AM steps at the finest level for different

block-sizes. A key observation is that as the block-size rb falls below 134 (i.e., nb ≥ 6

for an 800× 800 image dimension), kernel similarity drops significantly. This ineffec-

tiveness for smaller blocks is due to lack of sufficient image gradients within individual

blocks for MDF estimation. Also, the computation time increases as the block-size is
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Scale 3, Iteration 7

Scale 2, Iteration 7

Scale 1, Iteration 5

Scale 1, Iteration 6

Scale 1, Iteration 7

(a) MDF 1 (w1) (b) MDF 2 (w2) (c) MDF 3 (w3) (d) Latent image (L)

Figure 3.5: Iteration-by-iteration results of the alternative minimization of block-wise MDFs
and latent image: (a-c) Estimated block-wise MDFs and (d) Estimated latent image.
Notice the variation in block-wise MDFs, which depicts the characteristic of RS
blur (as shown in Fig. 3.3). Also, observe the convergence of the block-wise MDFs
through iteration 5 to 7 in the finest image scale (last three rows).
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reduced. These factors translate to a pose-intersection of 80%, which gives a reliable

block-size for typical CMOS settings (Fig. 3.3(left)).

Apart from sensor timings, camera ego-motion can also influence optimal block-

size, e.g., if the camera moves slowly during the exposure of few blocks, merging them

as a single block can reduce the number of unknown MDFs. Hence, we allow for

variable-sized blocks. We can segregate image-blocks without using sensor informa-

tion as described next. Given a blurred image, we convert the image to a coarse level

(M0 × N0), and estimate MDFs without the RS prior assuming uniform block-size of

r0. For each MDF, we find kernel similarity with the neighbouring MDFs (as described

earlier). Adjacent blocks with kernel similarity greater than 0.8 are combined until no

such merging is possible. The resultant block-sizes at the coarse level multiplied by the

upsampling factor to the finest image-level are considered for final segregation. For the

RS prior, since the pose-overlap Γ(r) in Eq. (3.5) is parametrised by a single unknown

(which is tr/te), we solve for tr/te (without requiring it from RS sensor) assuming the

number of rows (r) for the smallest segregated block as having 80% Γ.

3.5.2 Computational Aspects

We proceed to analyse the computational gain of our approach against the state-of-the-

art methods. First, our pose-space model (Eq. (3.6)) performs RS blurring efficiently as

already discussed in section 3.4.1. In contrast, the blurring process adopted in current

RS deblurring methods is relatively quite expensive. That is, given a latent image L and

temporal ego-motion (with Nt temporal bins), an RS blurred image is created by Nt in-

dividual transformations of L – each using individual warping and bilinear interpolation

over all image-locations – and the rows are combined using sensor timings (Eq. (3.2)

and Fig. 3.1). Second, our pose-space model together with the RS prior is amenable to

the very-efficient LARS framework (Eq. (3.13)). In contrast, because of the parametric

model (polynomial in (Su and Heidrich, 2015) and splines in (Tourani et al., 2016)) for

ego-motion in temporal domain, those methods need to employ non-linear optimization

(Eq. (9) in (Su and Heidrich, 2015) and Eq. (8) in (Tourani et al., 2016)), which is much

more expensive than LARS (Efron et al., 2004).

Third, our method employs patch-wise deblurring leveraging the very efficient FFT
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Figure 3.6: (a) Analysis on the effect of block-size. (b) Cumulative time for different processes.
Note the computational gains of the prior-less RS-EFF based image estimation step.

Image Ego-motion Latent image
dimension estimation time (s) estimation time (s)

ht. × wd.
Su and Heidrich

(2015)
Ours

Su and Heidrich
(2015)

Ours

800× 800 216.01 29.58 258.65 1.44
450× 800 122.28 22.48 44.23 1.30
400× 400 73.26 10.34 23.82 0.62

Table 3.1: Time comparisons with state-of-the-art (Su and Heidrich, 2015).

(rather than optimizing the full image with prior). In contrast, as stated under Eq. (15)

of (Su and Heidrich, 2015), for every iteration it must optimize the high-dimensional

latent image with a costly prior as

L(d+ 1) = arg min
L
‖XL−B‖2

2 + ‖∇L‖1, (3.15)

where L and B are vectorized latent and blurred images of size MN × 1, respectively,

and X is a sparse matrix of sizeMN×MN . Generating X using the expensive forward

model and optimization with a costly prior is a serious computational bottleneck for (Su

and Heidrich, 2015).

To determine the computational gains of our proposal, we conducted experiments

on variable-sized images. The average time taken for each AM step at finest level us-

ing MATLAB is listed in Table 3.1 (in a system with an Intel Xeon processor with 32

GB memory and using the code of (Su and Heidrich, 2015) from the author’s website).

It is clearly evident that our method offers significant computational gains. Note the

improvement of ego-motion estimation from 216 to 30 seconds, and latent image esti-

31



mation from 258 to 2 seconds for an 800 × 800 image. Also, observe the steep rise in

computational cost for (Su and Heidrich, 2015) with image size, unlike ours. We found

that for deblurring an 800 × 800 RGB image (of maximum blur-length of 30 pixels),

our unoptimized MATLAB implementation took about 9 minutes. Fig. 3.6(b) provides a

detailed break-up of the time taken for each estimation step. Observe that a large frac-

tion of the total time is utilized for latent image estimation in the final iteration which

involves a costly image-prior (see section 3.4.3). This underscores the importance of

our efficient prior-less estimation in the initial iterations derived from RS-EFF.

3.6 Experimental Results

In this section, we demonstrate that our method can handle both wide- and narrow-angle

systems, arbitrary ego-motion, and RS as well as GS blurs. We used default parameters

for all the competing methods.

Datasets used: For quantitative evaluation, we created RS motion blurred images us-

ing hand-held trajectories from the benchmark dataset in (Köhler et al., 2012). We used

focal length 29 mm (for wide-angle) and 50 mm (for narrow-angle), and sensor timings

of tr = 1/50 ms and te = 1/50 s (as in (Su and Heidrich, 2015)). Vibration motion was

taken from (Hatch, 2000). For real experiments, we considered individually the cases

of RS narrow-angle, RS wide-angle and CCD blurs. For the narrow-angle case, we used

the dataset in (Su and Heidrich, 2015). Since RS wide-angle configuration has not been

hitherto addressed, we created an RS wide-angle blur dataset which contains images

captured with iPhone 5S (focal length 29 mm). We also considered drone images from

the internet characterizing irregular ego-motion. For CCD blur, we used the dataset in

(Pan et al., 2016).

RS deblurring comparisons: We considered mainly the current RS-BMD state-of-

the-art method (Su and Heidrich, 2015) for evaluation. Since (Hu et al., 2016) requires

inertial sensor data, and (Tourani et al., 2016) uses multiple RGBD images, these tech-

niques do not address BMD and thus have been omitted for comparisons (also their

codes are not available). Further, we also include deep learning based single-lens de-

blurring methods to represent scale-space approach (Tao et al., 2018), generative mod-

els (Kupyn et al., 2018), and patch-based approach (Zhang et al., 2019). To analyse

the performance of CCD-BMD methods on CMOS data, we also tested with (Xu et al.,
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2013). Since the space-variant (SV) code of (Pan et al., 2016) (the best CCD-BMD) is

not available, we evaluated using (Xu et al., 2013) (the second best). For comparisons,

we downloaded the codes from the websites of the authors of (Su and Heidrich, 2015)

and (Xu et al., 2013).

GS deblurring comparisons: Since the SV code of (Pan et al., 2016) is not available,

we report results on the SV examples provided in (Pan et al., 2016). We also give com-

parisons with other SV-BMD methods (Xu et al., 2013; Whyte et al., 2012; Gupta et al.,

2010) in Fig. 3.12.

Quantitative evaluation: As pointed out in a very recent comparative study of BMD

(Lai et al., 2016), information fidelity criterion (IFC) (Sheikh et al., 2005) and visual in-

formation fidelity (VIF) (Sheikh and Bovik, 2006) are important metrics for evaluating

BMD methods (higher values are better).Thus we adopt the same. This is because the

correlation between MSE/PSNR and human judgement of quality is not good enough

for most vision applications, and hence calls for perceptually consistent metrics. Two

popular such metrics are IFC and VIF, which are devised using natural scene statistics in

an information-theoretic setting, i.e., natural scenes form a small subspace in the space

of all possible signals, and most real world distortion processes (such as the presence

of residual blur after deblurring) disturb these statistics and make the image unnatural.

These metrics employ natural scene models in conjunction with distortion models to

quantify the statistical information shared between the test and the reference images,

and posit that this shared information is an aspect of fidelity that relates well with vi-

sual quality. IFC is the mutual information between the source and the distorted images

between multiple wavelet sub-bands. In contrast, VIF is based on two mutual informa-

tion: one between the input and the output of the human vision system channel when

no distortion channel is present and another between the input of the distortion chan-

nel and its output of the human vision system channel. Also, we wish to highlight the

observation in (Shan et al., 2008) that ringing artifacts in deblurring are mainly caused

by ego-motion estimation error, which can be either due to inaccurate blur/ego-motion

model or ineffectiveness of optimization. Hence, we also use ringing as an evaluation

tool. For visual comparisons, we show images and their patches from upper and lower

image portions.

First, we consider a wide-angle system (29 mm and trajectory #39 (Köhler et al.,

2012)) in Figs. 3.7(first-row and a-c). Note that the result of (Su and Heidrich, 2015)
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Input Su et al. Ours

(a) ip (b) Su et al. (c) Ours (d) ip (e) Su et al. (f) Ours (g) ip (h) Su et al. (i) Ours

Figure 3.7: Comparison with the state-of-the-art RS deblurring method Su and Heidrich (2015)
for different cases: : First row gives a case of wide-angle system, second row
gives a case of vibratory motion, and third row provides a case of CCD-blur. (a-i)
Two image-patches corresponding to the three rows of different cases. Quantitative
evaluation for the three cases is as follows: For an RS wide-angle system (Su and
Heidrich (2015) - {1.31, 0.23}, Ours - {1.97,0.36}), (d-f) For vibratory motion
in an RS system (Su and Heidrich (2015) - { 0.49, 0.076 }, Ours - {0.59,0.086}),
and (g-i) For GS blur (Su and Heidrich (2015) - {1.25, 0.19}, Ours - {2.11,0.32}).
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(a) Narrow-angle system (b) Wide-angle system

Figure 3.8: Quantitative evaluation on benchmark dataset Köhler et al. (2012) with RS settings.
The performance of our method is comparable to that of Su and Heidrich (2015)
for narrow-angle systems but outperforms Su and Heidrich (2015) for wide-angle
systems; both sans RS timings tr and te, unlike Su and Heidrich (2015).

shows moderate ringing artifacts in the top patch (in the wall-linings and lantern),

whereas residual blur exists in the lower patch (in the table structure). In contrast,

our result recovers fine details in both the patches and with no ringing artifacts. This

reveals our method’s ability to deal with wide-angle systems, unlike (Su and Heidrich,

2015) which is designed for only narrow-angle systems.

Next we consider vibration ego-motion in Figs. 3.7(second-row and d-f) that sim-

ulates a robotic system with feedback control (Hatch, 2000). Since (Su and Heidrich,

2015) considers only narrow-angle systems, we also limit ourselves to narrow-angle

setting (50 mm), for a fair comparison. It is evident from the results of Fig. 3.7(e) that

the estimated polynomial model fits the initial portion of the trajectory well (top-patch

is deblurred), but diverges for the later portion (heavy ringing in bottom patch). In con-

trast, our method gives good deblurred result uniformly (Fig. 3.7(f)), which underscores

the importance of our non-parametric approach to ego-motion.

Finally, we evaluate the performance of RS BMD methods for GS deblurring in

Figs. 3.7(third-row and g-i). Here also, we limit to narrow-angle systems (50 mm,

trajectory #2 (Köhler et al., 2012)). Either due to the ineffectiveness of polynomial

approximation or initialization error, the result of (Su and Heidrich, 2015) has moderate

ringing artifacts with residual blurs. Our result reveals that our model generalizes to GS

blur well, as compared to (Su and Heidrich, 2015).

A detailed evaluation on dataset (Köhler et al., 2012) for narrow- and wide-angle

systems is given in Fig. 3.8. It clearly reveals that our method is either comparable to or
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1(a) Input 1(b) Cho and Lee 1(c) RS rect. + Cho and Lee

1(d) Xu et al. 1(e) Pan et al. 1(f) Su et al.

1(g) Ours without RS prior 1(h) Ours with RS prior 1(i) Patches of (g) and (h)

2(a) Input 2(b) Cho and Lee 2(c) RS rect. + Cho and Lee

2(d) Xu et al. 2(e) Pan et al. 2(f) Su et al.

2(g) Ours without RS prior 2(h) Ours with RS prior 2(i) Patches of (g) and (h)

Figure 3.9: Comparisons for RS narrow-angle examples in dataset Su and Heidrich (2015). Our
method provides negligible ringing artifacts and fine details, as compared to the
state-of-the-art RS-BMD Su and Heidrich (2015). (Table 3.1(450×800 entry) gives
the speed-up.) Note the effect of incoherent combination due to the block shift-
ambiguity (Section 3.3, claim 1) in (i)-first row, which is successfully suppressed
by our RS prior ((i)-second row).
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1(a) Input 1(b) Xu et al. 1(c) Pan et al.

1(d) Hu et al. 1(e) Su et al. 1(f) Ours

2(a) Input 2(b) Xu et al. 2(c) Pan et al.

2(d) Su et al. 2(e) Ours without RS prior 2(f) Ours

3(a) Input 3(b) Xu et al. 3(c) Pan et al.

3(d) Su et al. 3(e) Ours without RS prior 3(f) Ours

Figure 3.10: Comparisons for RS wide-angle examples (1 - low-light scenario, 2 - indoor case,
and 3 - outdoor case). As compared to the competing methods, our method models
the RS ego-motion better and produces consistent results overall.
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1(a) Input 1(b) Tao et al. 1(c) Kupyn et al.

1(d) Zhang et al. 1(e) Su et al. 1(f) Ours

2(a) Input 2(b) Tao et al. 2(c) Kupyn et al.

2(d) Zhang et al. 2(e) Su et al. 2(f) Ours

3(a) Input 3(b) Tao et al. 3(c) Kupyn et al.

3(d) Zhang et al. 3(e) Su et al. 3(f) Ours

Figure 3.11: Comparisons with deep learning methods (Tao et al., 2018; Kupyn et al., 2018;
Zhang et al., 2019). As compared to the deep learning methods, our method re-
covers more details from RS blurred images. This is possibly due to the unique
characteristics of RS blur as compared to dynamic scene blur.
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(a) Input (b) Gupta et al. (c) Whyte et al.

(d) Xu et al. (e) Pan et al. (f) Ours

Figure 3.12: Comparisons for CCD blur example in dataset Pan et al. (2016). Our result is
comparable with Gupta et al. (2010); Whyte et al. (2012); Xu et al. (2013) and
Pan et al. (2016).

better than (Su and Heidrich, 2015) for narrow-angle systems. The performance of our

method is strikingly superior for wide-angle systems. Note that all these are achieved

without requiring tr and te, unlike (Su and Heidrich, 2015).

Real examples: In Fig. 3.9, we evaluate our method on real examples for RS narrow-

angle systems using the dataset of (Su and Heidrich, 2015). The output of state-of-

the-art RS-BMD (Su and Heidrich, 2015) contains residual blur and ringing artifacts

compared to ours. Specifically, in the first example, the characters in patch 1 and details

in patch 2 are sharper in our output. In the second example, the minute structures of

the bag-zipper in patch 1 are restored well, while ringing in patch 2 is negligible. In

Fig. 3.10, we evaluate our algorithm for wide-angle systems (including irregular camera

motion). The first example depicts the case of low-light imaging, the second example

is an indoor case, and the third example is a drone image (outdoor and irregular ego-

motion). It is evident from the results of Fig. 3.10 that our method consistently delivers

good performance over (Su and Heidrich, 2015) in all the scenarios. The performance

degradation of (Su and Heidrich, 2015) in Fig. 3.10 may be attributed to its inability to

handle wide-angle systems (first and second examples) and irregular ego-motion (third

example). The comparison with deep learning methods (Tao et al., 2018; Kupyn et al.,

2018; Zhang et al., 2019) in Fig. 3.11 amply demonstrates the ineffectiveness of those

networks for RS deblurring. This can be possibly due to the unique properties of RS

blur, which is not present in their training datasets. Figures 3.9 and 3.10 also reveal

the inability of CCD deblurring methods to handle blur in RS systems. Also, the effect

of prior is qualitatively analysed in Fig. 3.9, which clearly reveals the prior’s potential
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(in removing aliasing of image-blocks). Finally, Fig. 3.12 considers a GS-blur case,

which demonstrates that our method is comparable to state-of-the-art GS-BMD, while

applicable for RS-BMD as well (as demonstrated earlier).

3.6.1 Implementation Details

We implemented our algorithm in MATLAB. We empirically set 7 scales, each with 7

iterations, in our scale-space framework (Section 3.4). The blurred image in the ith scale

is formed by downscaling the input image by a factor of (1/
√

2)i−1. For ego-motion

estimation (Section 3.4.2), we consistently used the regularization α (in Eq. (3.13))

in level i as 27−i (so that the RS prior can cope with the increasing image size, and

thus the data fidelity magnitude ‖Fw − ∇B‖2
2, in finer levels). We used the MDF

regularization β′ (in Eq. (3.13)) as 0.01. For latent image estimation (Section 3.4.3),

we used R = 48 such that each image-patch is square, and with 6 patches along the

shorter dimension and 8 patches along the longer dimension. For the Richardson-Lucy

deconvolution (employed in the last iteration of the finest level), we used a total number

of 30 iterations. For the selection of block-size (Section 3.5.1), we selected an initial

block-size r0 as 145, and a downscaling factor of 2 (i.e., M0 = M/2 and N0 = N/2).

3.7 Conclusions

In this chapter, we proposed a block-wise RS blur model for RS deblurring. We pro-

vided a detailed analysis of this model, and addressed invertibility issues using a com-

putationally tractable convex prior. We also proposed an efficient filter flow frame-

work that offers significant computational edge. Experiments reveal that our algorithm

achieves state-of-the-art results in terms of deblurring quality as well as computational

efficiency. Unlike existing RS deblurring methods, it can seamlessly accommodate

wide- and narrow-angle systems, blur due to hand-held and irregular ego-motion, and

GS as well as RS images; all without the need for sensor information.

The motion deblurring method presented in this chapter is pertaining to rolling shut-

ter cameras, which at a given time captures only a single image. Another important

imaging modality is light field cameras, which captures multiple images of a scene to

40



aid post-capture refocusing, f-stopping (Ng et al., 2005) and depth sensing (Tao et al.,

2013). Motion blur is a common artifact in light field cameras too. The increasing

popularity of light field (LF) cameras necessitates the need for tackling motion blur in

this imaging modality as well. But unlike RS deblurring discussed in this chapter, de-

blurring problem in LF cameras introduces additional challenge due to its multi-image

capture and unique imaging model, which we consider in the following chapter.
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CHAPTER 4

Full-Resolution Light Field Deblurring

4.1 Introduction and Related Works

1 Handheld light field cameras (LFCs) are being used in a variety of tasks including

wide-angle and hyperspectral imaging, shape recovery, segmentation, etc. (Dansereau

et al., 2017; Xiong et al., 2017; Li et al., 2017; Tao et al., 2013). The increase in

popularity of LFCs can be attributed to their attractive features over conventional cam-

eras (CCs), including post-capture refocusing, f-stopping, and depth sensing (Tao et al.,

2013; Adelson and Wang, 1992; Ng et al., 2005). LFCs achieve this by capturing multi-

ple (subaperture) images instead of a single CC image by segregating the light reaching

the CC-sensor into multiple angular components; and synthesize these images post-

capture to form an image of desired CC setting (Ng et al., 2005; Adelson and Wang,

1992). However, there is a downside too. The nuisance effect of motion blur becomes

exacerbated in LFCs. This is because the light-segregation principle in LFCs reduces

the amount of photons that make up individual subaperture images, thereby necessitat-

ing higher exposure times relative to CC (under the same setting). This escalates the

risk of motion blur in LFC. Moreover, a 4D LF comprising of 2D spatial and 2D an-

gular resolutions can be interpreted as several CC images stacked together. Thus the

numerical optimization involved in LF deblurring must deal with very large-sized data

as compared to that of CC. This poses additional computational challenges (Wu et al.,

2017; Srinivasan et al., 2017).

In this chapter, we address the problem of LF blind motion deblurring (LF-BMD),

i.e., the problem of estimation of clean LF and underlying camera motion from a single

motion blurred LF. As discussed in Chapter 2, BMD in CCs is a well-studied topic re-

plete with efficient methodolgies. State-of-the-art CC-BMD methods (Pan et al., 2016;

Xu et al., 2013; Su and Heidrich, 2015) are based on the motion density function (MDF)

1Based on: Divide and Conquer for Full-Resolution Light Field Deblurring. Mahesh Mohan M. R.
and Rajagopalan A. N.; CVPR 2018, IEEE Publications, Pages 6421–6429.
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Figure 4.1: (a) Working and drawbacks of the state-of-the-art LF-BMD method (Srinivasan
et al., 2017) (b) Outline of our proposed method: Our LF-BMD enables decom-
posing 4D LF deblurring problem into a set of independent 2D deblurring sub-
problems, in which a blind deblurring of a single subaperture-image enables low-
cost non-blind deblurring of individual subaperture images in parallel. Since all our
sub-problems are 2D (akin to CC-case) and thus cost-effective (as it allows efficient
filter flow or EFF (Hirsch et al., 2010) and is CPU-sufficient), our method is able to
handle full-resolution LFs, with significantly less computational cost.

(Gupta et al., 2010) which allows both narrow- and wide-angle systems as well as non-

parametric camera motion, possess a homography-based filter flow framework for com-

putational efficiency (Hirsch et al., 2010), and employ a scale-space approach to accom-

modate large blurs. Köhler et al. (2012) have shown (albeit for CCs) that general camera

motion comprising of 3D translations and 3D rotations can be well approximated by full

rotations, or inplane translations and inplane rotation. Inplane rotation common to both

the above approximations are necessary to capture wide angle settings (Mohan et al.,

2017; Su and Heidrich, 2015). Deblurring methods of Whyte et al. (2012); Xu et al.

(2013); Pan et al. (2016) follow the full-rotations approximation and employ efficient

filter flow (Hirsch et al., 2010) to yield high quality results in CC-BMD.

In contrast, LF-BMD is an emerging research area and there exists very few works.

Jin et al. (2015) proposed the first LF-BMD approach, but restrict the scene to be fronto-

parallel and bilayer, and limit the camera motion to only inplane translations. It works
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by reconstructing the support of foreground/background layers, corresponding sharp

textures, and motion blurs via an alternating minimization scheme. Further the method

shows that the reconstruction of the support of these two layers from a single image

of a conventional camera is not possible. A recent LF-BMD work by Srinivasan et al.

(2017) eliminates the planar scene assumption and even includes full 3D translations.

However, there the ego-motion is constrained to be parametric. This reduces its effec-

tiveness under irregular ego-motions, which is common when imaging from moving

vehicles, robotic platforms, etc. Moreover, since the translational pose cannot model

inplane rotation, both (Jin et al., 2015) and (Srinivasan et al., 2017) are ineffective for

wide angle systems. Dansereau et al. (2016) introduce a hardware-assisted deblurring

approach using a robotic arm to mount the camera and estimate camera motion (hence

non-blind). It generalizes Richardson-Lucy (RL) deblurring to 4D light fields by re-

placing the convolution steps with light field rendering of motion blur, and introduces

a regularization term that maintains parallax information in the light field. The work

of (Srinivasan et al., 2017) deals with blind motion deblurring for general 3D scenes.

Here, LFC is modeled as an array of pinhole cameras by discarding the effect of LFC-

lens, and the motion blurred 4D LF is treated as a composition of shifted and sheared

versions of a clean 4D LF. Deblurring with this model proceeds by optimizing for a

clean 4D LF at ‘one go’, using a 4D prior (Srinivasan et al., 2017).

However, (Srinivasan et al., 2017) has some major drawbacks. First, optimization

of 4D LF in toto brings up new challenges. The computational requirement involved

in this optimization restricts (Srinivasan et al., 2017) to handle only downsampled LFs

– both in spatial and angular resolutions (e.g., a Lytro Illum LF file decoded using

(Dansereau et al., 2013) has 197 subaperture images of size 433× 625, whereas (Srini-

vasan et al., 2017) requires downsampling it to 64 images of size 200 × 200 for com-

putational feasibility). As LF post-capture rendering involves composition of multi-

ple subaperture images (or angular components), angular downsampling can adversely

affect rendering performance. On the other hand, spatial downsampling restrics LF-

rendering software to produce only low-resolution RGB images. Furthermore, opti-

mizing high-dimensional data elevates the computational complexity and the method

warrants GPU-based processing. Also, such a high-dimensional optimization can dis-

tort the interrelations among subaperture images due to convergence issues, which is

an important factor for consistent post-capture rendering of LFs (Ng et al., 2005). Fig-
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ure 4.1 summarizes these drawbacks. Other very recent LF-BMD works include (Lee

et al., 2018) which primarily deals with deblurring only the center subaperture image

and (Lumentut et al., 2019) which is a deep learning based approach. Notably, both

these works assume a parametric ego motion. Lee et al. (2018) works by estimating

center subaperture image (SAI), depth map, and camera motion from a blurred 4D light

field, and uses the estimated center SAI and depth to warp other SAIs (another limi-

tation of this scheme is that occlusion cues in noncenter SAIs will be lost). Lumentut

et al. (2019) works by generating a LF blur dataset considering 6D motion, and employs

an end-to-end network to directly regress the deblurred LF via an MSE loss.

In this chapter, we introduce an MDF-based LF motion blur model which allows for

decomposition of LF-BMD into low-dimensional subproblems. This admits an efficient

filter flow framework (Hirsch et al., 2010) to remove the computational bottlenecks and

several other limitations of the state-of-the-art methods. Specifically, our model iso-

lates blur formation in individual subaperture images (unlike (Srinivasan et al., 2017)),

and imparts a dependency among all subaperture images through a common MDF. Our

formulation performs LF-BMD in two efficient steps, as illustrated in Fig. 4.1. First,

we estimate the common MDF from the center-subaperture image using BMD (akin to

CC-BMD). Second, by invoking the blur-isolation and commonality of MDF proper-

ties inherent to LFCs, we perform independent (or parallelizable) non-blind deblurring

of individual subaperture images using the estimated MDF while simulataneously ac-
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counting for the lens-effect and parallax arising from separation of subapertures from

the lens-center. Since each of these subproblems is low-dimensional, our method over-

comes the drawbacks associated with the high-dimensional optimization, and thus can

deblur LFs at full-resolution (Srinivasan et al., 2017). In addition, unlike (Srinivasan

et al., 2017), our LF-MDF model captures the effect of camera lens, can cater to both

wide- and narrow-angle camera settings, and can handle irregular camera motions.

Our main contributions are summarized below.

• By harnessing the physics behind LF, we decompose 4D LF-BMD to 2D sub-
problems, which enables the first ever attempt of full-resolution LF-BMD.

• Our work bridges the gap between the well-studied CC-BMD and emerging LFC-
BMD, and facilitates mapping of analogous techniques (such as MDF formula-
tion, efficient filter flow framework, and scale-space strategy) developed for the
former to the later.

• Our work dispenses with some important limitations impeding the state-of-the-art
(Srinivasan et al., 2017), such as high computational cost, GPU requirement, and
ineffectiveness in handling wide-angle systems & irregular ego-motions.

4.2 Understanding Light Field Camera

In this section, we describe the working of light field camera, first based on what hap-

pens inside the LF camera body, and next in relation to the imaging principles of CC.

A CC with a large-aperture setting spatially resolves light onto a 2D sensor array,

but fails to capture information of how the light coming from one part of the lens differs

from the light coming from another. In particular, a CC sensor captures in a given

sensor element the sum total of light rays coming through the entire lens-aperture to that

element. This can be visualized using Fig. 4.2(a), if we consider the micro-lens array

as the CC sensor; note that individual bundle of rays from each part of the lens (color-

coded in Fig. 4.2(a)) integrates in each CC sensor-element, without allowing them to

decompose. These individual bundles of rays, if acquired, address some major problems

in conventional photography – enabling post-capture refocusing and f-stopping, and

depth sensing (Ng et al., 2005). As compared to a CC, a light field camera further

resolves the light coming from different parts of lens-aperture (in 2D angular bins over

aperture, referred to as sub-aperture). In other words, if we consider CC as capturing

2D spatial information, then an LFC captures 4D information, containing 2D spatial
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information as well as 2D angular information. Intuitively, an LFC captures multiple

2D images, each imaged through a particular subaperture.

Figure 4.2(a) illustrates the LF capturing mechanism inside the camera body: An

LFC further segregates the light in each CC sensor-element in accordance with the sub-

aperture through which the light arrives. This is achieved by means of a microlens

placed in the position of each CC sensor element, which resolves each spatial com-

ponent into multiple angular components. The 2D spatially as well as 2D angularly

resolved light is stored in a high-resolution LFC-sensor (behind the microlens array) to

form a 4D LF. We now proceed to explain the working of a micro-lens. As shown color-

coded in Fig. 4.2(a), each microlens maps to a small array of bins in the LFC-sensor.

As a micro-lens is orders of magnitude smaller than the lens-aperture (≈ 3), the bundle

of rays from each subaperture appears to be parallel to the micro-lens (Ng et al., 2005).

Therefore, due to the parallel rays, individual bundle of rays focuses on the focal-plane

of micro-lens, where the LFC-sensor is placed, and falls in separate sensor-bins of the

micro-lens in accordance with the arriving angle of rays (Fig. 4.2(b)).

Without focusing on what happens inside camera body (as discussed earlier), the

working of a LFC can be closely related to that of a CC. The design of LFC-lens system

is such that light from different subapertures do not interfere with each other (Ng et al.,

2005). From Fig. 4.2(a), it is clear that a subaperture image is equivalent to a 2D image

formed in a CC with full-aperture setting but with only the respective subaperture open,

and the microlens-array is assumed to be a CC-sensor. It is well-known that, for a CC

with a large-aperture, the scene-points that are behind or in front of the focal-plane

creates defocus blur, with the blur-radius depending on the size of aperture and scene-

point depth (Rajagopalan and Chaudhuri, 1999). This is illustrated in Fig. 4.3(a) for

a scene-point behind the focal-plane, and a sample defocus blurred image is shown in

Fig. 4.3(b). Further, as shown in Fig. 4.3(c-d), if the CC aperture-size is reduced the

blur will be less. The center-subaperture image in a LFC forms in a similar way as

that of CC with a small aperture and the image formed in the position of micro-lens

array. Note that as the center-subaperture is over the lens-center, it incurs negligible

refraction and hence the popular pinhole model can be well-employed in this case. A

non-centered subaperture image can also be interpreted in the same way, by restricting

the rays of the CC through the respective subaperture, projecting onto the CC sensor

(Fig. 4.3(e-f)). Due to the restricted entry of rays, as in the previous case, the blur will
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Figure 4.3: Working of a light field camera (LFC) in relation to that of a conventional camera
(CC). (a-b) The image formed in a CC with a large-aperture creates defocus blur in
accordance with the aperture-size and scene-depth. (c-f) Individual subaperture im-
age in an LFC is equivalent to the image formed in the CC-sensor, but by restricting
the light rays to only pass through the respective subaperture. Therefore, individual
subaperture images contain negligible defocus blur. Also, note the 4D nature of LF
(Fig. (f)) as compared to the 2D nature of CC image (Fig. (b)).
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be less; however, due to the refraction incurred over the lens’ non-centered regions in

this case, the pin-hole model is not applicable here. More important, the refraction

effect in a subaperture increases as we move farther away from the lens-center.

4.3 MDF for Light Field Camera

In this section, we discuss the limitations of the LF motion blur model of (Srinivasan

et al., 2017). We then proceed to conceptualize (akin to conventional cameras) an MDF

based interpretation for motion blur in LFs, that seeks to mitigate the drawbacks of

(Srinivasan et al., 2017).

The LF motion blur model of (Srinivasan et al., 2017) discards the effect of LF-lens

and approximates LFC as an array of pinhole cameras positioned at the subapertures.

The camera motion is interpreted as an associated movement of these pinhole cam-

eras. In effect, a motion blurred LF is modeled as a composition of shifted and sheared

versions of the clean 4D LF. Using flatland analysis (i.e., considering a single angular

dimension v and a single spatial dimension x), a motion blurred 4D LF (LFb) can be

represented as

LFb(x, v) =

∫
t

LFc(x, u+ px(t)− xpz(t))dt, (4.1)

where LFc is the clean 4D LF and {px(t),pz(t)} is the camera motion path during the

exposure time. As only the angular term v is varying in Eq. (4.1), a motion blurred

subaperture image can be interpreted as a composition of multiple clean subaperture

images (where the amount depends on camera motion). In the above equation, consid-

ering a single blurred 2D subaperture image as the observation amounts to solving for

multiple clean 2D images as unknowns – a heavily ill-posed problem. Instead, (Srini-

vasan et al., 2017) considers the entire blurred 4D LF as observation and solves for a

clean 4D LF as unknown. This reduces the ill-posedness but incurs high-dimensional

optimization issues, as discussed in Sec. 4.1.

Motion blur in CC is typically modelled using MDF w (Chapter 2) as

B =
∑
p∈P

w(p) · L(K,RP), (4.2)
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Figure 4.4: LF motion blur model: (a) Interpreting camera motion as relative world motion,
each motion blurred 2D subaperture image is obtained as a combination of the pro-
jections of moving world (parametrized by a single MDF) through the respective
subaperture onto a virtual sensor or microlens array. Also, all subapertures experi-
ence the same world motion (or share a common MDF).

where Rp spans the plausible camera pose-space P and the MDF for a given pose

gives the fraction of exposure time the camera stayed in that particular pose. Along

similar lines, it is possible to conceptualize camera shake in LFC to be uniquely char-

acterised by an MDF, but having one-to-many mapping from world to LF-sensor due

to LF-capture mechanism. To develop an analogous MDF framework for LF-BMD, we

leverage the light field imaging principle in relation to the CC cameras (Fig. 4.3), i.e., a

clean subaperture image is equivalent to a 2D image formed in a CC with full-aperture

setting and with only the respective subaperture open.

Akin to CC, we too interpret motion to be stationary camera and a world moving

(Fig. 4.4). It can be shown that the rotations-only approximation in CC is valid for

LFCs as well (see Sec. 4.6.1). Each motion blurred subaperture image is thus equiv-

alent to an image formed in a full-aperture CC with only the respective subaperture

open. Interestingly, note that all subapertures are subjected to same world-motion (i.e.,

parameterized by a single MDF). Intuitively, each motion blurred subaperture image

is formed by a linear combination of the projections of the moving world through the

respective subaperture onto a virtual sensor formed by the microlens array. Thus, a
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blurred subaperture image Bk can be alternatively expressed as

Bk =
∑
p∈P

w(p) · Lk(Kk,Rp, γk) 1 ≤ k ≤ N, (4.3)

where Lk is the clean version of the kth subaperture image. Note that the camera matrix

Kk and parameter set γk vary with individual subapertures so as to capture one-to-many

world-mapping. Their exact forms will be discussed in a later section. Our model in

Eq. (4.3) isolates the blur in individual subaperture images, i.e., a single 2D blurred

subaperture image as observation amounts to solving for the corresponding clean sub-

aperture image as unknown (unlike (Srinivasan et al., 2017)). Also, a single MDF w(p)

is shared by all subaperture images.

The MDF-based LF motion blur model in Eq. (4.3) provides three distinct advan-

tages. First, because it isolates motion blur in individual subaperture images, we can

estimate the common MDF from a single subaperture image – a low-dimensional op-

timization (akin to CC-BMD). Second, since all subaperture images share a common

MDF, we can use the estimated MDF to perform non-blind deblurring of all the other

subaperture images. As non-blind deblurring of individual subapertures can be done

independently, this step is amenable to parallelization. Note that non-blind deblurring

methods (which optimize for a clean 2D image only once) are quite cost-effective as

compared to blind methods (which cumbersomely optimize for MDF and clean 2D im-

age alternately over iterations). These factors drastically reduce the computational cost

for LF-BMD and allow full-resolution LF-BMD. Third, since MDF captures both reg-

ular and irregular ego-motion, our method can handle unconstrained ego-motion; and

consideration of full rotational camera motion accommodates both narrow- and wide-

angle systems, unlike (Srinivasan et al., 2017; Jin et al., 2015).

4.4 MDF-based LF Motion Blur Model

In this section, we formulate our MDF-based light field motion blur model. The MDF

formulation requires world-to-sensor mapping in each subaperture, so as to derive indi-

vidual LF homographies.
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Figure 4.5: LFC Mappings: (a-c) and (d-f) An exhaustive set of world-to-sensor mappings of
a scene-point focused before and after the sensor-plane (us ≤ u and us > u) for
subapertures positioned at positive X axis, respectively. The derived relations are
also valid for subapertures at negativeX , due to its symmetry about the optical axis.

4.4.1 World-to-Sensor Mapping in a Subaperture

Conventional cameras with a small-aperture setting can be well-approximated by a pin-

hole centered at the aperture’s center. This approximation is widely used in many prac-

tical applications (including CC-BMD) (Hartley and Zisserman, 2003; Pan et al., 2016;

Xu et al., 2013). In LFCs, the characteristics of light refraction over different subaper-

tures vary in accordance with their positions due to the effect of large-aperture lens

(Sec. 4.2). This effect cannot be captured with a pinhole array (as the main lens is not

involved); e.g., a beam of parallel rays through LFC-lens converge at the focal point,

but will pass parallel through a pinhole camera array. To account for this effect, we

52



approximate subapertures as pinholes over subaperture-centers, and yet configured to

obey the refractions incurred at that portion.

Figure 4.5(a) shows a flatland ray tracing model for a subaperture positioned above

the optical-center and a world point with positiveX coordinate. Following the thin-lens

equation with focal length f , a light-ray from a world point {Xs, Ys, Zs} through the

subaperture has to pass through the point of intersection of the principal ray (i.e., a ray

through the optical center) and a fronto-parallel plane at a distance us from the optical

center, where us is given by

1

us
+

1

|Zs|
=

1

f
=⇒ us =

f |Zs|
|Zs| − f

. (4.4)

Note that world coordinate Zs is negative according to our convention (i.e., |Zs| =

−Zs). From Fig. 4.5(a), similarity of triangles ∆ABO and ∆ODC gives

−r
Xs

=
us
−Zs

=⇒ r =
usXs

Zs
. (4.5)

From similarity of ∆PQD and ∆PGS, we get

k − r
k − xs

=
us
u

=⇒ xs = r · u
us
− k ·

(
u

us
− 1

)
. (4.6)

Figures 4.5(b-c) illustrate all cases of the same subaperture but with world point having

negative X coordinate. It can be easily verified that Eqs. (4.4)-(4.6) hold good for this

situation as well. Moreover, (due to symmetry about the optical axis) these equations

are valid even for subapertures positioned below the lens-center.

In Fig. 4.5(d-f), we depict various cases of us > u for a subaperture positioned

above the optical-center. Following the derivation for us ≤ u cases, it can be shown

that Eqs. (4.4)-(4.6) hold true for various cases of us > u as well; i.e., valid irrespective

of the scene-point location and the sensor-plane placement (u > us or u ≤ us). Due to

the symmetry about the optical axis of ray diagrams, these relations are equally valid

for subapertures positioned at negative X axis. The above discussion establishes that

Eqs. (4.4)-(4.6) are quite general in nature.
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Substituting in Eq. (4.6), us and r from Eqs. (4.4)-(4.5) yields

xs =
uXs

Zs
− k ·

(
u

f |Zs|
· (|Zs| − f)− 1

)
,

=
uXs

Zs
− k

(
u

f
− 1

)
− ku

Zs
, ∵ |Zs| = −Zs.

(4.7)

The flatland analysis of Eq. (4.7) can be extended to 3D world coordinate system and a

2D sensor plane as
x

y

1

 =
1

Z


u 0 kx(f − u)/f

0 u ky(f − u)/f

0 0 1



X

Y

Z

− 1

Z


kxu

kyu

0

 , (4.8)

where we have dropped the subscript s for brevity, and kx and ky are the distances of

subaperture from the optical-center in x and y directions, respectively. Representing

[x, y, 1]T as x, [X, Y, Z] as X, the matrix as Kkxy , and the vector as bkxy , Eq. (4.8) can

be concisely represented as

x =
1

Z
· (KkxyX− bkxy), (4.9)

where subscript kxy represents individual subapertures in accordance with their sepa-

rations kx and ky. Note that the matrix Kkxy is of full rank or invertible. Further, the

world-to-sensor mapping of CC (see Chapter 2) is a special case of Eq. (4.9), i.e., the

case that of the center subaperture or kx = ky = 0.

4.4.2 Homographies for LFC blur

In this section, analogous to the homography mapping in conventional cameras (Sec. 2.1),

we derive the homography transformation of LFC for a single camera pose-change and

then extend it to our MDF-based blur model. Consider a single world coordinate change

from X to X′ as

X′ = RX. (4.10)
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Using world-sensor mapping in Eq. (4.9), the mapping of sensor coordinate from x to

x′ (corresponding to the world coordinate mapping from X to X′) is given by

Z ′ ·K−1
kxy

x′ + K−1
kxy

bkxy = Z ·RK−1
kxy

x + RK−1
kxy

bkxy

or x′ =
1

Z ′

(
ZKkxyRK−1

kxy
x + (KkxyRK−1

kxy
− I)bkxy

) (4.11)

which gives the homography mapping for subaperture kxy. From Eqs. (4.3)&(4.11),

the parameter set γi comprises of bi and scene depth, to capture the parallax and lens

effects. Note that the homography formulation of CC is a special case of Eq. (4.11),

which corresponds to that of the center subaperture image (i.e., kx = ky = 0, which

makes Kkxy = K and bkxy = 0, thereby resulting in x′ =
Z

Z ′
(KRK−1x)).

Considering multiple pose-changes, we can represent the motion-blurred subaper-

ture image Bkxy as

Bkxy =
∑
p∈P

w(p) · Lkxy(Kkxy ,Rp, γkxy), (4.12)

where Lkxy(·) performs the warping function according to Eq. (4.11) and MDF w(p0)

represents the fraction of time the world stayed in rotational pose Rp0 . Note that the

MDF w(p) is shared among all the subapertures.

We also throw light on the possibility of individually deblurring subaperture images

using CC-BMD. Assuming Kkxy = K ∀kxy and neglecting γkxy necessitates different

MDFs for capturing the one-to-many mapping of LF. This distorts their mutual consis-

tencies (e.g., see epipolar image of Figs. 4.12(d-e)), mainly due to shift-ambiguity of

latent image-MDF pair (Mohan et al., 2017), and relative estimation-error of different

MDFs. This adversely affects the refocusing and f-stopping of LFs (Ng et al., 2005).

Furthermore, since blind deblurring is significantly costlier than non-blind deblurring,

the computational cost climbs steeply with increase in spatial and angular resolutions.

4.5 Optimization of LF-BMD

In this section, we discuss our divide and conquer strategy for LF-BMD that consists

of two steps: First, estimate the common MDF from a single subaperture image using
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regular BMD, and second, employ the estimated MDF to perform low-cost non-blind

deblurring of remaining subaperture images (in parallel) using respective homography

mapping (of Sec. 4.4.2).

4.5.1 LF-MDF Estimation

The homography mapping of the center-subaperture image (i.e., kx = ky = 0 in

Eq. (4.11)) is equivalent to that of a CC-pinhole model (Hartley and Zisserman, 2003),

i.e.,

x′ = λ ·KRK−1x ∵ Kkxy = K and bkxy = 0, (4.13)

where scalar λ (= Z/Z ′) normalizes the third coordinate of x′ to unity (Eq. (4.8)). Note

that even though depths Z and Z ′ are present in Eq. (4.13), it is not required for ho-

mography mapping (and thus for MDF estimation) since it translates to a normalization

of the third coordinate of x′ to unity (see structure of x in Eq. (4.8)) through λ (Hart-

ley and Zisserman, 2003; Pan et al., 2016; Xu et al., 2013; Whyte et al., 2012). Thus,

any state-of-the-art CC-BMD method can be employed to find the LF-MDF using the

center-subaperture image.

We now analyse the effect of adding more subaperture images (SAIs) to estimate

the MDF (instead of one SAI that we followed). Incorporating more SAIs does not

produce any significant improvement in MDF, while accentuating the computational

cost. Typically, MDF is estimated as ŵ = minw ‖Hkxyw − Bkxy‖2 + λ‖w‖1. For

a maximum 30 pixel blur, 3D rotation space binned by 1 pixel is 293. Considering a

single SAI (< 1% data), the number of equations (or the number of SAI pixels) will be

10X as that of the number of unknowns, which is already an overdetermined system and

sufficient for MDF estimation (Whyte et al., 2012). Incorporating n more SAIs scales

the number of equations by order of n (but the effect of more equations retains the

overdetermined nature), while incurring additional cost for creating individual Hkxys

and handling large matrix (nHkxys stacked).
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4.5.2 EFF for Non-Blind Deblurring of LFs

Since a common MDF is shared among all subaperture images, we utilize the estimated

MDF to perform non-blind deblurring of individual subaperture images. For a non-

centered subaperture, camera matrix Kkxy varies with subaperture positions and the

additive term of Eq. (4.11) is nonzero (which makes it different from the CC-pinhole

case). Eventhough 1/Z ′ in Eq. (4.11) can be obtained by normalization (as in CC-case),

the depth information Z is required for homography mapping to capture parallax and

lens effect. A direct approach for non-blind deblurring involves constructing a large

matrix Mkxy using the MDF formulation of Eq. (4.12) for each subaperture kxy, to

solve the optimization problem

ˆLkxy = min
Lkxy

‖MkxyLkxy −Bkxy‖2
2 + prior(Lkxy), (4.14)

where ‘prior’ is an image regularizer, such as total variation (TV), sparsity in image

gradient (Xu et al., 2013), dark channel (Xu et al., 2013), etc. As a full-resolution LF is

composed of numerous subaperture images, construction of Mkxy and optimization of

individual subaperture images with priors are computationally expensive. To this end,

we elegantly extend the efficient filter flow (EFF) employed in CCs (Hirsch et al., 2010)

to LFCs.

The EFF approximates space-variant blur in an image to be locally space-invariant

over small image patches. Using this approximation, we can simplify the blurring pro-

cess in a subaperture image as

Bkxy =
R∑
i=1

C†i ·
{
hikxy ∗ (Ci · Lkxy)

}
, (4.15)

where i iterates over R overlapping patches in clean subaperture image Lkxy , Ci ·L is a

linear operation which extracts the ith patch from the image L, (h ∗Ci · L) performs a

convolution with kernel h on ith patch, and C†i inserts the patch back to its original po-

sition with a Barlett windowing operation. The convolution kernel hikxy corresponding

to the ith patch center can be derived using Eq. (4.12) as

hikxy = Ci ·

(∑
p

w(p) · δi(Kkxy ,Rp, γkxy)

)
, (4.16)
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where δi is an image of the same size as that of the subaperture image with only an im-

pulse located at the ith patch center. EFF requires MDF-based motion blur model to be

calculated only at patch centers and eliminates the need for building large matrices for

optimization, as in Eq. (4.14). The EFF allows for an efficient patch-based deblurring:

ˆLkxy =
R∑
i=1

C†i · deconv
(
hikxy , (Ci ·Bkxy)

)
, (4.17)

where ‘deconv’ indicates non-blind deconvolution which is computationally efficient as

compared to optimization based deblurring (of Eq. (4.14)).

4.6 Analysis and Discussions

In this section, we elaborate on the validity of rotation-only approximation in LF-BMD,

and depth estimation. Further, we consider the effect of noise in our LF-BMD and pro-

pound ways to suppress it.

4.6.1 Rotation-only approximation

In this section, we justify our rotation-only model for light field cameras. As discussed

in Sec. 4.5.1, the effect of camera motion in center subaperture of light field camera is

equivalent to that of a conventional camera. However for a non-centered subaperture,

there exists an inherent translation component due to subaperture separation from the

lens-center, apart from the effect of camera rotation and translation. Note that we have

already accounted for the inherent translation component or parallax (via bkxy , as noted

in Sec. 4.4.2) together with the camera rotation motion in our blur model, i.e., Eq. (4.11)

can be decomposed as:

x′ =
1

Z ′

ZKkxyRK−1
kxy

x + (KkxyRK−1
kxy

)bkxy︸ ︷︷ ︸
Effect of Camera Rotation

−bkxy︸ ︷︷ ︸
Inherent translation of SAs

 (4.18)

The 3D approximation of general 6D motion (3D translations and 3D rotations) is typ-

ically followed to reduce the computational cost for ego-motion estimation. It is shown
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in (Pan et al., 2016; Whyte et al., 2012) that 3D camera translations can be neglected in

conventional cameras (and hence for center subaperture). In contrast, in non-centered

subapertures, as we have already considered their inherent translations, the camera

translation will have only an additional effect due to lens-effect (refraction of lens)

as compared to CCs. We show here that this lens-effect is negligible, which justifies

the assumption of rotation-only model for light field cameras as well. Considering the

worst-case plausible camera translation as t̂w = [|r|, |r|, |r|], (Whyte et al., 2012) shows

for CC that the corresponding worst-case pixel translation t = [tx, ty, tz] = K0t̂w/Z
′

can be ignored (K0 = diag(u, u, 1)). We claim that pixel translations in our LFC-

model is equivalent to that of CC for inplane translations, and approximates t for 3D

transaltion t̂w. Considering X′ = RX + tw in Eq. (4.10), translation t for subaper-

ture kxy (using Eq. (4.11)) amounts to t̂ = Kkxyt/Z
′ = (K0 + Mkxy)t/Z ′, where

Mkxy = [0, 0, kx(f − u)/f ; 0, 0, ky(f − u)/f, 0; 0, 0, 0]. Note that the components of

Mkxy constitute the lens-effect (Sec. 4.4.1). For tz = 0, Mkxyt/Z
′ = 0 (i.e., equal

effect in CC and LFC). Note that worst-case displacement happens for highest kx or ky

(= f/4). For conventional camera t̂, LFC t̂ = [αtx, αty, tz], where α = 1+|(f−u)/4u|

or 1+|f |/(4|Z ′|) (using Eq. (4.4)). As |Z ′| is in the order of m and |f | in mm, 1 ≈ α < 2

(i.e. t̂ ≈ t). Hence proved.

4.6.2 Depth Estimation

To estimate the convolution kernels for different SAIs (for EFF), our algorithm requires

depth information (γ in Eq. (4.16)). We use (Tao et al., 2013) to estimate depth for

each patch by picking the most-confident depth estimate within that patch (without final

depth refinement). Our consideration of uniform depth within a small image patch is

analogous to the flatness and global smoothness priors commonly used for final depth-

refinement (Tao et al., 2013; Janoch et al., 2013). Depth estimation method in (Tao

et al., 2013) is as follows. Refocusing LF translates to a skew in epipolar images, and

their features for a image point will be vertical (or horizontal depending on projection)

when it is at focus, and slanted when it is out-of-focus (Ng et al., 2005). (Tao et al.,

2013) skews epiolar images corresponding to different depths, and picks among them

the depth which makes those features vertical. Motion blurred LFs also possess this
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Figure 4.6: Evaluation of depth estimation cues: The first and second entry provides a clean and
blurred LF. The third and fourth entries (and fifth and sixth entries) show respective
estimated depth using defocus cue (and correspondence cue).

Deconvolution
method

Direct
(Gaussian)

Fast hyper-
Laplacian

0.8 norm on
gradients

Richardson
Lucy

Time/SA image
(Full-res. LF)

1.1 second
(closed-form)

6.2 seconds
(lookup table)

55 seconds
(50 iters.)

80 seconds
(50 iters.)

Table 4.1: Time per subaperture (SA) image for different LF-EFF deconvolution methods for
full-resolution LFs.

(a) Input (b) Srinivasan et al. (c) Gaussian prior

(d) Krishnan et al. (e) Levin et al. (f) Richardson Lucy

Figure 4.7: Qualitative evaluation of different LF-EFF deconvolutions using a full-resolution
LF. (a) Input, (b) LF-BMD result of Srinivasan et al. (2017) for reference (2X
bicubic-interpolated). (c) Direct approach using Gaussian prior, (d) Fast MAP esti-
mation with hyper-Laplacian prior using lookup table Krishnan and Fergus (2009),
(e) MAP estimation with heavy-tailed prior (α = 0.8) Levin et al. (2007), and (f)
Richarson Lucy deconvolution Richardson (1972). Note the ringing artifacts in (c)
in the saturated regions (e.g., in lights and door exit). Richardson Lucy deconvolu-
tion in (f) produces the best result with negligible artifacts.
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desired characteristics (see epipolar images in Figs. 4.12–4.13(a) and depth cues in

Fig. 4.6).

4.6.3 Choice of LF-Deconvolution

In this section, we discuss our choice of deconvolution method employed to perform

LF-EFF patch-wise deblurring in Eq. (4.17). A nonblind LF-EFF deconvolution prob-

lem, i.e., estimation of a clean image patch given the blur kernel and blurred image

patch, possesses multiple solutions due to zero crossings of filter response, saturation

or noise effects, etc. Maximum a posteriori (MAP) estimation which imposes prior(s)

on clean image patch is typically employed to obtain a single solution from the multiple

solution space. A MAP estimation for nonblind deconvolution is given as

ˆLkxy = min
Lkxy

‖MkxyLkxy −Bkxy‖2
2 + ‖∇Lkxy‖α (4.19)

where H captures the blur-kernel information,∇ is the gradient operator, and Bkxy and

Lkxy are blurred and latent image patches of kxyth subaperture, respectively. We con-

sidered four different deconvolution approaches: (a) A direct approach which considers

Gaussian prior (α = 2) and thus has a closed form solution, (b) A fast deconvolution

using hyper-Laplacian prior (0.5 ≤ α ≤ 0.8) which is solved using a lookup table

(Krishnan and Fergus, 2009), (c) A heavy-tailed prior (α = 0.8) which is solved using

iterative reweighted least squares process (Levin et al., 2007), and (d) Richardson Lucy

deconvolution with smoothness prior which is solved using iterative process (Richard-

son, 1972). Figure 4.7 provides a representative example of LF deblurring quality (using

Fig. 4.13) with different approaches, and Table 4.1 gives the average time per subaper-

ture image; it is evident that there exists a trade-off between visual quality and compu-

tational speed. In terms of visual quality, we empirically found out that (Richardson,

1972) is the best, and the direct method comes second but with ringing artifacts (e.g.,

see Fig. 4.7(c)). In terms of computational time, the direct method is the most efficient,

whereas Richardson Lucy method (due to its iterative approach) is less efficient. How-

ever, we have selected Richardson Lucy method due to its superior deblurring quality.

However, direct deblurring can be selected for computational efficiency, provided one

can tolerate minor ringing artifacts.
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(a) Input (b) Prior 0.005 (c) Prior 0.009 (d) Prior 0.05

Figure 4.8: Effect of prior in our LF-BMD (using dataset of Srinivasan et al. (2017)). (a) In-
put, (b) Ours with default smoothness regularization (SR) 0.005, (c) Ours with SR
0.009, (d) Ours with SR 0.05. Our result with SR 0.05 prior produces negligible
ringing artifacts. Note that our method is CPU-based and yet achieves a speed-up
of atleast an order (≈ 17X) as compared to state-of-the-art method of Srinivasan
et al. (2017) which is GPU-based.

4.6.4 Noise in LF-BMD

LF images captured in low-light scenarios possess higher level of shot noise as com-

pared to that of an analogous CC-camera (due to segregation of photons for angu-

lar resolution) (Wu et al., 2017). As deblurring can be interpreted as enhancing the

high-frequency content of the scene, LF-BMD also enhances the high-frequency noise

(if present). As discussed in Sec. 4.5.1, we consider the center subaperture image

to estimate the common LF-MDF using (Whyte et al., 2012). State-of-the-art CC-

BMDs frame the objective function in image’s gradient space so as to reduce the ill-

conditionness (Hirsch et al., 2010; Whyte et al., 2012). Unlike the gradient of scene

features which form contiguous segments, the gradients of shot noise form isolated

spikes. Harnessing this information, we remove the less-contiguous segments from

image-gradient to form the objective function, which reduces the ill-effects of noise

in MDF-estimation. For nonblind deblurring (Sec. 4.5.2), we use the estimated MDF

to obtain patch-wise kernels for individual subaperture images (Eq. (4.16)), and per-

form deconvolution using (Richardson, 1972). In case of noisy images, we use a higher

smoothness prior (regularization of 0.05) for deconvolution to reduce the noise-effect

in deblurred images. Our default regularization value is 0.005. To show how noise

can be handled, Fig. 4.8 provides the effect of varying regularization that clearly shows

suppression of noise as the prior increases.
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Figure 4.9: Impact of incorporating more subaperture images for camera motion estimation.

4.6.5 Drawback of decomposing the LF-BMD problem

Our decomposition scheme enables considering the full-resolution LF (which was in-

feasible by the competing method), and with competitive speed-gain (see Table 2).

However, there exists one drawback with respect to accuracy of camera motion esti-

mation. We attempt to experimentally analyse this by considering multiple subaperture

images (SAIs) instead of one SAI for camera motion estimation. Figure 6.5 reveals that

incorporating more SAIs produces slight improvement in MDF estimation. However,

Fig. 6.5 also shows that this marginal improvement in accuracy is offset by processing

time (in order to optimize with more SAIs as compared to one). The reason for this is

explained in Sec.4.5.1.

4.7 Experimental Results

In this section, we provide quantitative and qualitative evaluations to highlight the com-

putational gain of our approach and its ability to deal with full-resolution LFs with

competitive performance. We also show that our method can deal with both wide-angle

systems and irregular camera trajectories, unlike the state-of-the-art LF-BMD (Srini-

vasan et al., 2017).

Datasets used: For real experiments on low-resolution LFs, we used the motion blurred

LF dataset of (Srinivasan et al., 2017). Since there exist no full-resolution motion blur

LF-datasets, we create one with LFs captured using Lytro Illum, and decoded raw-

LFs to MATLAB format full-resolution LFs using (Dansereau et al., 2017). For quan-

titative evaluation, we synthesized motion blur on clean full-resolution LFs using real
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Handheld traj. 1 Handheld traj. 2 Handheld traj. 3 Vibration traj.
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 Ours on low-res. LF - {200,289,8,8}
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 State-of-the-art on low-res. LF - ''

 Ours on high-res. LF - {433,625,15,15} 

(a) LF-version of IFC (b) LF-version of VIF

Figure 4.10: Quantitative evaluation using the LF-version of VIF and IFC. We use real hand-
held trajectories (from Köhler et al. (2012)) and irregular camera motion using
vibration trajectory (from Hatch (2000)). Note that the method of (Srinivasan
et al., 2017) cannot perform high-resolution LF deblurring.

handheld trajectories from (Köhler et al., 2012) with 29 mm focal-length (wide-angle

setting) and 1/50 s exposure time. For irregular motion, we used real vibratory ego-

motion trajectory from (Hatch, 2000).

Comparison methods: We consider mainly the current state-of-the-art LF-BMD (Srini-

vasan et al., 2017) for evaluation. To demonstrate the ineffectiveness of CC methods on

LFs, we also use state-of-the-art CC-BMD methods (Krishnan et al., 2011) and (Pan

et al., 2016) to perform independent deblurring on individual subaperture images. The

codes for (Srinivasan et al., 2017; Pan et al., 2016) and (Krishnan et al., 2011) are down-

loaded from the authors’ website, and used their default parameters for all the methods.

Note that the code for other LF-BMD is not available for comparison.

Quantitative Evaluation: For LF-BMD benchmarking, we introduce an LF-version

of information fidelity criterion (IFC) (Sheikh et al., 2005) and visual information fi-

delity (VIF) (Sheikh and Bovik, 2006), which are shown to be the best metrics for BMD

evaluation for CC in (Lai et al., 2016), by averaging these metric over subaperture im-

ages. As processing full-resolution LFs using (Srinivasan et al., 2017) is not feasible,

we use a downsampled version (by ≈ 0.5) of our dataset to perform comparisons with

(Srinivasan et al., 2017). Using IFC/VIF, Figs. 4.10(a-b) compare with (Srinivasan

et al., 2017) for wide-angle scenario (using real trajectories of (Köhler et al., 2012))

and irregular camera motion (using (Hatch, 2000)). It is evident from Fig. 4.10 that our

method performs better than (Srinivasan et al., 2017) (performance loss of (Srinivasan

et al., 2017) may be attributed to its inability to model these scenarios); ours can also

deblur full-resolution LFs (unlike (Srinivasan et al., 2017)). Table 5.2 gives the tim-

ing comparisons with the state-of-the-art (Srinivasan et al., 2017). It is evident that,
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LF-resolution State-of-the-art Ours
{x, y, u, v} (GPU-based) (CPU-based)

{200, 200, 8, 8} 2 hrs, 20 mins 8.21 mins
(Gain 17.05×)

{200, 289, 8, 8} 3 hrs, 17 mins 12.62 mins
(Low-res. LF) (Gain 15.61×)

{433, 625, 15, 15} Not feasible 38 mins∗

(Full-res. LF) (Resource allocation error) (Feasible)

Table 4.2: Time comparisons. *Over 90% of the time is used for low-cost 197 non-blind de-
blurring parallelized in 8 cores of a CPU. Using more cores or GPU further improves
the speed significantly. A typical full-resolution LF of consumer LF camera Lytro
Illum consists of 197 RGB subaperture images of size 433× 625.

even though our method uses only CPU, we achieve a gain of atleast an order relative

to the GPU-based (Srinivasan et al., 2017). Also, our method performs full-resolution

LF-BMD within three-quarters of an hour, which can be further improved using more

cores.

Qualitative Evaluation: We qualitatively evaluate our deblurring performance on syn-

thetic and real LFs. Figure 4.11 provides trajectories used for synthetic experiments

as well as comparison with competing methods. Figure 4.12 gives an example of real

low-resolution LF. Note that the epipolar images of (Srinivasan et al., 2017), (Krishnan

et al., 2011) and (Pan et al., 2016) are not consistent with the input. Also, there exists

ringing artifacts in Fig. 4.12(c) of (Srinivasan et al., 2017) (especially in upper leaves).

In contrast, our result in Fig. 4.12(b) reveals intricate details (see the veins in lower

leaf), has negligible ringing artifacts and produces consistent epipolar images. Fig. 4.13

shows comparisons with real full-resolution LFs, where the top and bottom rows depict

well-lit and low-lit scenarios, respectively. The LF-BMD of (Srinivasan et al., 2017)

processes only a downsampled LF (both spatially and angularly) due to computational

constraints. In contrast, our method gives superior results in full-resolution and with

consistent epipolar images.

4.7.1 Implementation Details

System Specifications: We used a PC with an Intel Xeon processor and a 16 GB RAM

for all CPU-based experiments, and implemented our algorithm in MATLAB. The re-

peatedly used EFF routine is implemented in C for computational efficiency. We per-
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(a) Trajectories (b) Input (c) Ours (d) Srninivasan et al.

Figure 4.11: Synthetic experiments in dataset (Dansereau et al., 2013) using real handheld
(Köhler et al., 2012) and vibration (Hatch, 2000) trajectories. (a) Trajectories, (b)
Inputs, (c) Ours, and (d) Bicubic interpolated result of (Srinivasan et al., 2017).
Top-row gives a case of handheld trajectory. In d, note that the low-resolution re-
sult of (Srinivasan et al., 2017) after interpolation fails to recover intricate details
(e.g., feathers in lorikeet’s face). Bottom-row gives a case of irregular motion.
Deblurring performance of (Srinivasan et al., 2017) in (d) is quite low, possibly
due to the inability of its parametric motion model in capturing vibratory motion.

(a) Input (b) Ours (c) Srinivasan et al. (d) Krishnan et al. (e) Pan et al.

Figure 4.12: Comparison using low-resolution LF ({200, 200, 8, 8}) from dataset of Srinivasan
et al. (2017). (a) Input, (b) Ours, (c) State-of-the-art LF-BMD Srinivasan et al.
(2017), (d) State-of-the-art CC-BMD Krishnan et al. (2011) (e) State-of-the-art
CC-BMD Pan et al. (2016). Note the inconsistencies in epipolar image w.r.t input
for c (possibly due to convergence issues) and d-e (possibly due to lack of depen-
dency among BMD of subaperture images). Also, notice the ringing artifacts in
the upper leaves in c. In contrast, ours reveals more details (like veins of lower
leaf), has negligible ringing artifacts, and epipolar image is consistent.
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(a) Input (b) Ours (c) Srinivasan et al. (d) Pan et al.

Figure 4.13: Comparisons using full-resolution LF ({433, 625, 15, 15}) of Lytro Illum.
Top-row shows a well-lit case and bottom row shows a low-light scenario. (a)
Input, (b) Ours, (c) State-of-the-art LF-BMD (Srinivasan et al., 2017) and (d)
State-of-the-art CC-BMD (Pan et al., 2016). (Srinivasan et al., 2017) can only de-
blur downsampled LF due to computational constraints. Ours produce a superior
full-resolution LF with consistent epipolar images in all cases.

form nonblind deblurring of eight subaperture images in parallel. For executing the

code of (Srinivasan et al., 2017), we used a GPU-server and employed a Pascal Titan

X GPU. Running time reported in Table 5.2 is obtained using these specifications. The

camera we used for obtaining full-resolution light field examples is LYTRO ILLUM

40 Megaray.

Parameters: We employed Lytro Desktop App to download LF raw images and a pub-

licly available LF toolbox (Dansereau et al., 2013) to decode raw images into LF Matlab

file. The camera parameters focal length f and lens-sensor separation u are obtained

from Lytro metadata. As Lytro camera has constant aperture setting as f/2, we period-

ically sampled 197 subapertures in a circular disk of the aperture dimension to obtain

kx and ky. We used camera metadata and a modified source code of (Tao et al., 2013)

to produce discrete depth with respect to the center subaperture image in individual

patches (as discussed in Sec. 4.5.2).

The sensor coordinate x corresponding to a scene point varies with subaperture kxy

due to parallax and lens effect (e.g., in Fig. 4.5, for the case of u > us the depth Zs

of a scene point maps to sensor coordinate at R through the centre pinhole, whereas

shifted by RS through the shifted pinhole). As the depth estimate Z obtained using

(Tao et al., 2013) is with respect to the center subaperture image, it is required to map

this to other non-centered subaperture images for retaining one-to-one correspondence
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between x and Z (in Eq. 4.11). This we accomplished by warping the estimated depth

(with coordinate x) to subaperture kxy (with coordinate x′) as x′ = x − δxkx,y , where

δxkx,y is derived using similarity of ∆DOP and ∆DRS in Fig. 4.5:

δxkx,y = k · u− us
us

. (4.20)

where us is a function of Z. This relation even holds true for the case of u < us (which

is verifiable using Fig. 4.5).

Development: A pseudo-code is provided in algorithm 1. Our algorithm comprises

Algorithm 1 Light field blind motion deblurring
Require: Decoded motion blurred LF file (LF ) (using (Dansereau et al., 2013))

Estimate patch-wise depth using (Tao et al., 2013) (following Sec. 4.6)
centerSAI ← LF (0, 0)
Estimate MDF using the centerSAI (employing (Whyte et al., 2012))

for all SAIs (in parallel) do
Project blur in SAI patches using the estimated MDF (using Eq. (4.16))
Patch-wise deconvolution using the projected blur (using Eq. (4.17))
Merge individual patches using windowing operation (Sec. 4.5.2)

end for

of two steps: blind deblurring of center subaperture image to estimate the common

MDF and project the estimated MDF to other subaperture images to perform nonblind

deblurring (in parallel) employing EFF. For the first step, as the MDF-based source

code of the best CC-BMD (Pan et al., 2016) is not available and (Xu et al., 2013)

provides only an executable code, we used a modified code of (Whyte et al., 2012) to

incorporate LF parameters. For the scale-space based alternative minimization for MDF

and latent image, we used 5 scales with 6 iterations each. For all experiments, we used

MDF regularization as 0.01 and total variation regularization as 0.005. For the second

step, we implemented a C-based EFF code to obtain kernels corresponding to the patch

centers using Eq. (4.16), and employ Richardson Lucy method in Eq. (4.17).

4.8 Conclusions

We introduced a new interpretation of motion blur in 4D LF as independent blurring of

multiple 2D images, yet all sharing a common motion parametrization. This paved the
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way for performing LF deblurring as a single 2D blind deblurring (to estimate the com-

mon motion) and parallelizable low-cost 2D non-blind deblurring of multiple images.

Our approach overcomes several major drawbacks of the state-of-the-art, such as heavy

computational cost, ability to deblur only low-resolution LFs, and GPU-processing.

Unlike the state-of-the-art, our model realistically captures refraction effects of lens,

and works for wide-angle scenarios and irregular ego-motion as well. As LF cameras

continue to evolve with higher resolutions, our divide and conquer strategy will be in-

valuable for full-resolution deblurring.

Light field cameras discussed in this chapter capture multiple images, which share

the same exposure time, resolution, and focal length due to the micro-lens array set-up.

Yet another computational cameras that are popularized by today’s smartphones, and

provide similar functionality as LF cameras are unconstrained dual-lens cameras. In

these cameras, the multiple images can have different exposure times, resolutions and

focal lengths. Due to this flexibility, the deblurring method discussed in this chapter is

not effective for unconstrained DL configuration, which calls for a different approach;

this we discuss in the next chapter.

69



CHAPTER 5

Deblurring for Unconstrained Dual-lens Cameras

5.1 Introduction and Related Works

1 Modern cameras come with dual-lens (DL) configuration, that can have different or

identical focal lengths or field-of-views (FOVs), exposure times, and image resolutions

(which we refer to as unconstrained set-up). For instance, the world of smartphones

is today experiencing a proliferation of unconstrained DL cameras, wherein almost all

devices consider a narrow-FOV camera paired to a conventional wide-FOV camera (for

portrait photography), with possibly different resolutions. Also, many of their appli-

cations warrant seamless transitions between exposure times, e.g., HDR imaging (Park

et al., 2017; Bätz et al., 2014; Sun et al., 2010), low-light photography (Wang et al.,

2019a), and stereoscopics (Pashchenko et al., 2017) require differently-exposed stereo

images in accordance with scene brightnesses, whereas super-resolution (Jeon et al.,

2018) and visual odometry (Mo and Sattar, 2018; Iyer et al., 2018) require stereo im-

ages with nearly-identical exposure times. All these important applications are marred

by motion blur (akin to normal cameras (Hu et al., 2016; Zhang et al., 2010; Lu et al.,

2009; Petschnigg et al., 2004)). However, there exists not a single BMD method that

addresses the current trend of unconstrained DL set-up.

The problem of BMD for DL cameras possess additional challenges over those

present in normal cameras. First, a DL set-up warrants deblurring based on scene depth

(Xu and Jia, 2012), whereas methods for normal cameras are typically independent of

depth (Pan et al., 2016; Xu et al., 2013; Whyte et al., 2012; Gupta et al., 2010), as recov-

ering scene depth from a single blurred image is a difficult problem (Hu et al., 2016;

Gupta et al., 2010). Second, any method for DL-BMD must ensure scene-consistent

disparities in the deblurred image-pair (akin to angular coherence in light fields (Mo-

han and Rajagopalan, 2018; Srinivasan et al., 2017)), which also opens up many poten-

1Based on: Unconstrained motion deblurring for dual-lens cameras. Mahesh Mohan M. R., Sharath
Girsih, and Rajagopalan A. N.; ICCV 2019, IEEE Publications, Pages 7870–7879.



tial applications (Jeon et al., 2018; Park et al., 2017; Shen et al., 2017; Mo and Sattar,

2018). This is an additional conformity condition in DL-BMD.

In addition, the narrow-FOV genre popularized by the current smartphones admits

further issues. The higher focal length of narrow-FOV camera amplifies the effect of

camera shake (Whyte et al., 2012), thereby renders motion blur more severe. Moreover,

the assumption of center-of-rotation (COR) of the camera at the optical center signifi-

cantly affects ego-motion estimation, and hence the deblurring quality (Hu et al., 2016;

Hee Park and Levoy, 2014). In practice, COR may be located at a point far away, such

as in the photographer’s wrist in case of handheld shake (Sindelar and Sroubek, 2013;

Joshi et al., 2010). The higher focal length exacerbates the issues of COR too. It must

be noted that, none of the existing BMD methods are designed to handle the COR issue.

The works (Lee et al., 2018; Chandramouli et al., 2018; Mohan and Rajagopalan,

2018; Srinivasan et al., 2017; Xu and Jia, 2012) show that BMD methods developed for

normal cameras are seldom successful for computational cameras. This has necessitated

new methods adhering to the modified camera-principles and ensure the coherencies in

the computational data (Mohan and Rajagopalan, 2018; Srinivasan et al., 2017; Xu and

Jia, 2012). For the case of DL cameras, Xu and Jia (2012) restrict to a constrained

set-up, i.e., require two identical cameras to work in synchronization, so that the same

blur applies to both images. It works by partitioning the blurred image-pair into regions

and estimates their PSFs. As small-size regions lack necessary structural information

to guide PSF estimation, it proposes region trees to hierarchically estimate them. Im-

portantly, the method imposes strong assumptions on blur that it is primarily caused by

inplane translations (which does not hold good in practice (Whyte et al., 2012)) and that

the scene is fronto-parallel with layered depth. Recently, DL video deblurring methods

have been proposed (Pan et al., 2017; Sellent et al., 2016), but they address dynamic ob-

jects and necessitate as input multiple stereo image-pairs. Further, light field deblurring

is also not applicable here as those methods constrain all multi-view images to share

identical camera settings and ego-motions (Lee et al., 2018; Chandramouli et al., 2018;

Mohan and Rajagopalan, 2018; Srinivasan et al., 2017).

Among other closely related works, Hu et al. (2014) estimate clean image and lay-

ered depth from a single blurred image. This work introduces a layer-based approach

using matting to partition individual depth layers and an expectation-maximization
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scheme to solve this problem. However, (Hu et al., 2014) requires the blur to be primar-

ily due to inplane translations. To reduce the ill-posedness, Pan et al. (2019) assume

that accurate depth is known a priori, but it is difficult to achieve in blur scenarios (Lee

et al., 2018; Hu et al., 2016). Further, the method imposes strong assumption of uni-

form ego-motion parameterized by a single camera-pose that has negligible rotation,

which is very unlikely in practice (Köhler et al., 2012; Su and Heidrich, 2015; Whyte

et al., 2012). Arun et al. (2015) propose a method for multi-shot BMD, but employ

four images and restrict to layered depth scenes. It works by estimating PSFs over dif-

ferent spatial locations to arrive at MDF, and employs this to recover latent image and

depth by alternate minimization. However, (Arun et al., 2015) requires all the images

to be registered within a few pixels (which is typical in ego-motion induced disparities

(Sroubek and Milanfar, 2012), but does not hold good for baseline induced disparities

(Brox et al., 2004)). This constraint is imposed so as to estimate the camera motion

with respect to a common pose space.

In this chapter, we address the hitherto unaddressed problem of BMD for uncon-

strained DL set-ups. First, we propose a DL-blur model that accounts for arbitrary

camera settings and COR. Second, we reveal an inherent ill-posedness present in DL-

BMD, under the unconstrained exposure scenarios ((Wang et al., 2019a; Park et al.,

2017; Pashchenko et al., 2017; Sun et al., 2010; Wilburn et al., 2005; Zhang and Chen,

2004)), that disrupts scene-consistent disparities. To this end, we devise a new prior

that respects consistency of disparities (and also aids ego-motion estimation). Priors

that render the resultant cost highly nonconvex or warrant a costly optimization are not

desirable (Srinivasan et al., 2017; Pan et al., 2016; Xu et al., 2013). We show that

our prior is convex and retains the biconvexity property (required for convergence (Per-

rone and Favaro, 2014; Xu et al., 2013; Cho and Lee, 2009)) and allows for the efficient

LASSO framework. Finally, based on the proposed model and prior, we develop a prac-

tical DL-BMD method. It eliminates the restrictions of (Mohan and Rajagopalan, 2018;

Hu et al., 2014; Xu and Jia, 2012) and also address the COR issue. To eliminate the

processing difficulties incur in jointly optimizing multiple images or ego-motions, we

propose a divide strategy that decompose a high-dimensional BMD problem into sub-

problems, while enforcing the proposed prior and convexity. Our main contributions

are summarized below:

• This is the first attempt to formally address blind motion deblurring for uncon-
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strained camera configurations. To this end, we introduce a generalized DL blur
model, that also allows for arbitrary COR.

• We reveal an inherent ill-posedness present in DL-BMD, that disrupts scene-
consistent disparities. To address this, we propose a prior that ensures the bi-
convexity property and admits efficient optimization.

• Employing the introduced model and prior, we propose a practical DL-BMD
method that achieves state-of-the art performance for a current DL set-up. It
ensures scene-consistent disparities, and accounts for the COR issue (for the first
time in BMD framework).

5.2 Motion Blur Model for Unconstrained DL

In this section, we introduce a DL motion blur model and its corresponding pixel-wise

mapping, considering cameras with different FOVs, exposure times, and resolutions.

In a DL camera set-up, at any instant of time, one camera will perceive a shifted

world (by the stereo baseline) with respect to that of a reference camera. Following

(Mohan and Rajagopalan, 2018; Pan et al., 2016; Su and Heidrich, 2015; Xu et al.,

2013; Whyte et al., 2012), we consider a blurred image as the integration of rotation-

induced projections of world over the exposure time, the rotations being caused by

camera shake, but do not constrain the COR to be only at the optical center. Thus, a

rotational pose-change translates a world coordinate X to

X′ = R(X− lc) + lc + lb, (5.1)

where R is the corresponding rotational matrix (Whyte et al., 2012), lb is the base-

line vector (lb = 0 for the reference camera) and lc is the unconstrained COR vector

(defined in the world coordinate system). We indicate the parameters of the relatively

narrow-angle camera by superscript n and the other by superscript w. Thus a DL mo-

tion blurred image-pair (Bw and Bn) (with the COR factored in) can be represented as

Bw =
1

twe

∫
t∈twe

Pw
(
Rt(X− lc) + lc

)
dt,

Bn =
1

tne

∫
t∈tne

P n
(
Rt(X− lc) + lc + lb

)
dt,

(5.2)

where the wide-angle camera is considered as reference (without loss of generality). In
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practice, the COR (lc) remains fixed over the exposure time (te) (Hu et al., 2016).

For sake of simplicity, with a slight abuse of notation, we use P n(·) and Pw(·)

to denote DL images formed by projecting the world onto the narrow- and wide-angle

camera sensors, respectively, that is, by the argument of P
(
Rt(X−lc)+lc+lb

)
we mean

a transformation mapping T(Rt,lc,lb) : X→ Rt(X− lc) + lc + lb, ∀X in world-space.

As discussed in Chapter 2, in a conventional camera, a given world coordinate X0 is

mapped to a (homogeneous) sensor coordinate x0 accordance with x0 = KX0/Z0,

where Z0 is the scene depth and K is the intrinsic camera matrix (K = diag(f, f, 1),

and f is the focal length in pixels). Note that different image resolutions are captured by

the scale factors that are used to convert parameters from metres to pixels (Whyte et al.,

2012). Resultantly, for a world coordinate X0, it is evident from Eq. (5.2) that the pixel-

displacement due to camera motion (or RtX0) and COR (or lc −Rtlc) gets relatively

amplified in narrow-angle camera by a factor of fn/fw. (Typical values of fn/fw are

around two in portrait-enabled smartphones, and hence exacerbates the issues of motion

blur and COR).

To linearize the dual-lens motion blur model, we equivalently represent Eq. (5.2) as

the integration of image-projections over pose-space (instead of over time) as

Bn =

∫
p∈P3

wn(p) · P n
(
Rp(X− lc) + lc+ lb

)
dp, (5.3)

where P3 is the 3D space of plausible rotational camera poses. The wn(p0) gives the

fraction of exposure time over which the camera stayed in pose p0, which defined over

the entire P3 is referred to as motion density function (MDF). The MDF formulation

can accommodate both regular and irregular camera motion (unlike (Lee et al., 2018;

Srinivasan et al., 2017; Su and Heidrich, 2015)). The consideration of full 3D rotations

accommodates both narrow- and wide-FOV cameras (Su and Heidrich, 2015).

We now proceed to derive the pixel-mapping in DL set-ups. This is the counterpart

of homography-mapping in normal cameras (Chapter 2) or light field cameras (Chap-

ter 4), which is extensively used to create warp matrix for ego-motion estimation and

blur-matrix for latent image estimation. Using Eq. (5.1), the transformation of a world

coordinate X for a stationary camera (i.e., R = I) can be written as

X′′ = X + lb, (5.4)
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where X(3) (= Z) is the depth of the scene-point X and lb is the baseline vector. The

world coordinate X′′ maps to the corresponding sensor-coordinate x (in accordance

with Eq. (5.2)) as

x = KnX
′′

Z ′′
= KnX

′′

Z
= Kn (X + lb)

Z
∵ lb(3) = 0. (5.5)

Next, we consider the case of a camera pose-change R about the COR lc. That is, the

world coordinate X is transformed as

X′ = R(X− lc) + lc + lb = R(X + lb) + (I−R)lc + (I−R)lb. (5.6)

Substituting Eq. (5.5) in Eq. (5.6) yields

X′ = ZR(Kn)−1x + (I−R)lc + (I−R)lb. (5.7)

Using Eq. (5.2), the world coordinate X′ maps to the corresponding sensor-coordinate

x′ as

x′ = KnX
′

Z ′
=
Z

Z ′
KnR(Kn)−1x +

1

Z ′
Kn(I−R)lc +

1

Z ′
Kn(I−R)lb,

=
Z

Z ′

(
KnR(Kn)−1x +

1

Z
Kn(I−R)lc +

1

Z
Kn(I−R)lb

)
.

(5.8)

As the sensor coordinate x′ is in homogeneous system, x′(3) should be unity. There-

fore, the scale Z/Z ′ in Eq. (5.8) can be considered as a normalization constant (say λ)

that normalizes the third coordinate of x′ to 1, which leads to the pixel-mapping of a

(homogeneous) coordinate x as

x′ = λ
(
KnR(Kn)−1x +

1

Z
Kn(I−R)lc︸ ︷︷ ︸
center-of-rotation

+
1

Z
Kn(I−R)lb︸ ︷︷ ︸

baseline

)
. (5.9)

Point spread function (PSF) at a spatial coordinate x is obtained by superimposing the

pixel-mappings of x for all pose-changes undergone during the exposure time. Note that

PSFs over spatial coordinates completely characterize motion blur (i.e., motion blurred

image is obtained by the space-variant convolution of PSFs and latent image) (Whyte

et al., 2012; Su and Heidrich, 2015). An important insight from Eqs. (5.2)-(5.9) is that

PSF (and hence motion blur) in a DL set-up is depth-variant due to the baseline and
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COR, with its sensitivity increasing from farther to nearer scene-features (in addition

to spatial variance). Wide-angle image can be represented akin to Eqs. (5.3) and (5.9)

by enforcing lb = 0, and with a different MDF ww and projection Pw.

5.3 A New Prior for Unconstrained DL-BMD

In this section, we first attempt to directly formulate a cost using Eqs. (5.3)-(5.9) for

DL-BMD. Then we show that this approach is untenable for unconstrained DL set-ups,

and warrants an additional prior.

The joint cost for DL-BMD is L = Ln + Lw:

Lk = ‖Akwk −Bk‖2
2 + λk1‖wk‖1 + λk2‖∇Lk‖1,

where ‖Akwk −Bk‖2
2 = ‖MkLk −Bk‖2

2.
(5.10)

where k ∈ {n,w}, Lk is the clean image, and wk is the vectorized form of wk(p)

(where p is an element of the pose-space P3). The cost is derived as follows: For MDF

wk, Eq. (5.3) enforces a linear relation via warp matrix Ak, wherein its ith column

contains the warped version of clean image Lk, with the pose of wk(i) (Whyte et al.,

2012; Xu et al., 2013), in accordance with Eq. (5.9). For clean image Lk, Eq. (5.9)

enforces a linear relation (i.e., space-variant convolution) via PSF matrix Mk, wherein

its ith column contains the PSF corresponding to the ith coordinate. The term ‖wk‖1

enforces a prior on MDF that a 1D camera-path over time represents a sparse population

in the 3D pose-space, and ‖∇Lk‖1 enforces the total-variation image prior (Perrone and

Favaro, 2014; Whyte et al., 2012; Chan and Wong, 1998). Note that Ak and Mk are

depth-dependent and are unique to DL set-up, via baseline and COR in Eq. (5.9).

As discussed before, the estimated deblurred image-pair {Ln, Lw} must be related

through scene-consistent disparities, i.e., the narrow-angle camera must perceive the

same scene-orientation, displaced by the baseline lb, as that by the wide-angle camera

(e.g., Ln = P n(X+ lb), if Lw = Pw(X)). However, directly considering the DL-BMD

cost for estimating {Ln, Lw} is untenable, as stated below:

Claim 1: There exist multiple valid solutions of deblurred image-pairs (or ill-posedness)

for the DL-BMD cost (L in Eq. (5.10)) but that produce scene-inconsistent disparities.
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Proof: A desired solution which minimizes Eq. (5.10) is the one involved in the blurring

process (Eq. (5.3)), which we refer to as the true image-pair {P n(X+ lb), Pw(X)} and

true MDFs {wn(p), ww(p)}. Though not characterizing the blur process per se, Eq. (5.3)

can be equivalently written as

Bn =
∑
p

wn(p)P n
(
RpR

−1
n Rn( X︸︷︷︸

true

−lc) + lc + lb
)
,

=
∑
p

wn(p)P n
(
RpR

−1
n (Rn(X− lc) + lc︸ ︷︷ ︸

apparent

−lc) + lc + lb
)
,

(5.11)

where the new scene-orientation of narrow-angle lens is Rn(X−lc)+lc, where Rn 6= I .

The quantity Rn has the effect of shifting all the true poses undergone by the camera

(Rp,p ∈ P3) by an offset of R−1
n , which in turn produces an MDF that is a shifted

version of the true MDF (and hence the MDF-sparsity cost remains the same). Conse-

quently, a new solution according to Eq. (5.11) is the image-pair {P n(Rn(X−lc)+lc+

lb), Pw(X)}, which clearly fails the criterion for scene-consistent disparities (i.e., the

narrow-angle camera perceives a different scene-orientation). Also, as the new narrow-

angle image is a warped version of the true narrow-angle image, it adheres to the TV

prior, and therefore the new solution minimizes Ln. The cost Lw remains the same (as

the wide-angle image or MDF incurs no change). Resultantly, the same solution mini-

mizes L, which concludes the proof. �

A similar ambiguity also arises for the wide-angle case. This is obtained from Eq. (5.11)

by enforcing lb = 0 and replacing P n by Pw. As the costs Ln and Lw (in Eq. (5.10)) are

independent, the pose Rn need not be equal to that of wide-angle (Rw). For unequal Rn

and Rw, the resultant image-pair becomes {P n(Rn(X−lc)+lc+lb), Pw(Rw(X−lc)+

lc)}. Following the similar steps in the proof, we can show that the resultant solution

minimizes L, though the image-pairs produce scene-inconsistent disparities.

We attempt to provide some insights on the effect of ill-posedness. Consider the

case of a positive inplane rotation ambiguity, with COR at the optical center. Fig-

ure 5.1(a) shows three image coordinates {A,B,C} with identical scene-depths (i.e.,

the same disparities). Fig. 5.1(b) considers the rotational ambiguity, i.e. the coordinates

{A,B,C} are mapped to {A′, B′, C ′}, respectively. It is evident from Fig. 5.1(b) that,

relative to the scene-feature ofB,A’s scene-feature appears to be farther and C’s scene-

feature appears to be nearer, even though all the scene features have identical depths in
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(a) Desired solution (b) An ill-posed solution

Figure 5.1: {A,B,C} in Fig. (a) correspond to scene-features at the same depth (i.e., identical
disparities). Fig. (b) considers an inplane rotational ambiguity, wherein {A,B,C}
translates to {A′, B′, C ′} which clearly leads to inconsistent disparities.

(a) GT MDF (b) W/ Prior (c) W/o Prior

  

With priorNarrow-angle images Wide-angle images
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Ground truthOm nama Sivaya

(d) Image patches

Figure 5.2: Effect of the proposed prior: (a-d) MDFs and deblurred image patches with (W/)
and without (W/o) prior (with all MDFs centroid-aligned with the ground truth (GT)
wn to align left-images). MDF estimate of the prior-less case has a random offset
(Fig. (c)) and the corresponding deblurred image clearly reveals scene-inconsistent
disparities (Fig. (d)). Also, the deblurred image in the prior-less case exhibits con-
siderable ringing artifacts and residual blur (Fig. (d)). In contrast, the addition of
our proposed DL prior successfully curbs the pose ambiguity and improves the
MDF accuracy (Fig. (b)) and produces better deblurring quality (Fig. (d)).
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the world system.

Note that the ill-posedness exists irrespective of the exposure time being identical

or different. Moreover, the inconsistent deblurred image-pair shares all the issues asso-

ciated with the classical problem of stereo rectification (Loop and Zhang, 1999; Xiao

et al., 2018) that deals with physical misalignment of cameras. These methods work

by estimating a pair of homography for rectification (Xiao et al., 2018; Fusiello et al.,

2000). However, the ambiguity in DL-BMD is different, in that it necessitates depth-

variant transformation due to baseline and arbitrary COR (Eq. (5.9)).

We tackle the ill-posedness within our deblurring method, by employing a judi-

ciously derived prior. For this, we assume that there exists an overlap between exposure

times of different cameras. A DL set-up that violates this assumption has to incur sig-

nificant ghosting artifacts, and is hence not preferred (Park et al., 2017). Note that our

assumption is generic as compared to that of the complete exposure-time overlap in the

only-existing DL-BMD method (Xu and Jia, 2012).

Our prior is motivated by the previous discussion, in that the deblurred image-pair

will be consistent if Rn = Rw. For identical exposure time, this criterion requires that

both the MDFs completely intersect over the pose-space. For overlapping exposure

time, both MDFs must intersect over the shared poses. Hence, we introduce a DL

prior of the form ‖wn − ww‖2. Intuitively, the prior functions as follows: The DL-

BMD cost can admit MDF-pairs with significant relative drifts, which severely disrupt

scene-consistent disparities (e.g., see Figs. 5.2(c,d)). However, these solutions are not

favoured with the inclusion of the prior because it enforces the resultant cost to increase

with relative drifts (e.g., see Figs. 5.2(b,d)).

The proposed DL prior has several desirable properties: As shown in (Perrone and

Favaro, 2014; Xu et al., 2013; Cho and Lee, 2009; Gupta et al., 2010), the biconvexity

property (i.e., the BMD cost is convex with respect to MDF for a given clean image,

and vice-versa) guarantees convergence via alternating minimization. Our final cost has

this property.

Claim 2: The DL-BMD cost L (Eq. (5.10)) is biconvex with respect to image-pair {Ln,

Lw} and MDF-pair {wn, ww}. The DL prior is convex, and when added to the cost L

retains the biconvexity property.
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(Note: For the proofs, we employ two well-known properties of convex functions: (1)

Composite of a convex function with a non-decreasing function is a convex function.

(2) Non-negative addition of convex (or biconvex) functions is a convex (or biconvex)

function (Boyd and Vandenberghe, 2004).)

Lemma 1: The costs Ln (and Lw) are individually biconvex in image Ln and MDF wn

(and Lw and ww), respectively.

Proof: (Note: A function is biconvex in L and w if it is convex in L for a given w, and

vice-versa.) For a given Ln, the cost Ln (in Eq. (5.10)) is given as

Ln = ‖Anwn −Bn‖2
2 + λn1‖wn‖1 + Constant, (5.12)

where the ‘Constant’ is λn2‖∇Ln‖1. The first and second terms are composite of two

convex functions (i.e., a linear transformation of wn) with non-decreasing function (i.e.,

squared-l2 or l1 norm), and hence convex (Property 1). Further, the third term is convex

as a constant is a convex function. Therefore, the cost Ln is convex with respect to wn

(by Property 2 mentioned above).

For a given wn, the cost Ln (in Eq. (5.10)) can be equivalently represented as

Ln = ‖MnLn −Bn‖2
2 + λn2‖∇Ln‖1 + Constant, (5.13)

where the ‘Constant’ is λn1‖wn‖1. Again, the first and second terms are composite

of two convex functions with non-decreasing function (i.e., a linear transformation of

Ln with squared-l2 or l1 norm), and the third term is convex. Therefore, the cost Ln

is convex with respect to Ln (by Property 2). Hence Ln is biconvex in Ln and wn.

Similarly, we can show that Lw is biconvex in Lw and ww. �

Now we proceed to prove the part 1 of Claim that the DL-BMD cost L = Ln + Lw

(Eq. (5.10)) is a biconvex function in image-pair {Ln,Lw} and MDF-pair {wn,ww}.

Proof: (We denote the function F for a given w as Fw.) From Lemma 1, the biconvexity
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of Ln implies

Lnwn

(
γL1

n + (1− γ)L2
n
)
≤ γLnwn(L1

n) + (1− γ)Lnwn(L2
n),

∀{L1
n,L2

n,wn}, ∀γ ∈ [0, 1];

LnLn

(
γw1

n + (1− γ)w2
n
)
≤ γLnLn(w1

n) + (1− γ)LnLn(w2
n),

∀{w1
n,w2

n,Ln}, ∀γ ∈ [0, 1].

(5.14)

As the cost Ln is independent of wide-angle parameters {Lw,ww}, Eq. (5.14) can be

equivalently written as

Ln{wn,ww}
(
γ{L1

n,L1
w}+ (1− γ){L2

n,L2
w}
)
≤ γLn{wn,ww}({L1

n,L1
w})

+(1− γ)Ln{wn,ww}({L2
n,L2

w});

Ln{Ln,Lw}
(
γ{w1

n,w1
w}+ (1− γ){w2

n,w2
w}
)
≤ γLn{Ln,Lw}({w1

n,w1
w})

+(1− γ)Ln{Ln,Lw}({w2
n,w2

w}).

(5.15)

Eq. (5.15) implies that Ln is biconvex in {Ln,Lw} and {wn,ww}. Following similar

steps, the same inference can be derived for Lw too. Since the DL-BMD cost L is

obtained by the summation of two biconvex function Ln and Lw, it must be biconvex

with respect to image-pair {Ln,Lw} and MDF-pair {wn,ww} (by Property 2). Hence

proved. �

Now we proceed to prove part 2 of the claim that introducing the DL prior in the

DL-BMD objective L (Eq. (5.10)) retains the biconvexity property.

Proof: The prior Lp = α‖wn −ww‖2 : α > 0 can be equivalently represented as

Lp = α‖Sw‖2, where S = diag(I,−I), and w is wn and wwconcatenated. (5.16)

First, Lp{wn,ww}({Ln,Lw}) is a constant, and therefore it is convex with respect to dual

image-pair {Ln,Lw}. Second, Lp{Ln,Lw}({wn,ww}) is a composite of a convex func-

tion with a non-decreasing function, (i.e., linear transformation of {wn,ww} with l2

norm). Hence, the function is convex in {wn,ww} (by Property 1). Therefore, the prior

Lp is biconvex in {Ln,Lw} and MDF-pair {wn,ww}. Resultantly, the non-negative

addition of Lp to a biconvex function L (Claim 1) retains the biconvexity property (by

Property 2). �
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Also, our prior serves to impart reinforcement between the dual images (through

MDFs), which Eq. (5.10) does not possess (as Ln and Lw are independent). It aids in

ego-motion estimation, which in turn leads to improved deblurring (e.g., see Fig. 5.2(d)).

Further, the prior allows for efficient LASSO optimization (as we shall see in Sec-

tion 5.4.2).

5.4 A Practical algorithm for DL-BMD

In this section, we propose a practical DL-BMD algorithm for unconstrained camera

settings and arbitrary COR (a first of its kind), based on the proposed model and DL

prior (Secs. 5.2–5.3). We show that a multi-camera BMD problem can be divided into

subproblems (with the same dimension as that of normal camera BMD) while enforcing

the DL prior and convexity property.

Our method proceeds in a scale-space manner to handle large blurs (Pan et al.,

2016; Xu et al., 2013; Whyte et al., 2012; Cho and Lee, 2009). We employ alternating

minimization for depth, COR, MDF and latent image, in that order. The convergence

of alternating minimization is supported by Sec. 5.3, in that resolving the ill-posedness

enforces scene-consistent image-pair, which in turn produces consistent depth and COR

(Hu et al., 2016). As ‘depth from stereo’ is a well-studied problem, we selected an off-

the-shelf algorithm for depth estimation (Liu et al., 2009) (owing to its good trade-off

between accuracy and speed (Li et al., 2018; Shih and Chen, 2018)).

5.4.1 Center-of-Rotation Estimation

To estimate COR, we consider a cost which is the least squares error between blurred

images and synthesized blurry images using the blur model (via Eqs. (5.3)-(5.9)) and

current estimates of other unknowns. We frame the cost in the gradient domain of

the images to improve the condition number (Cho and Lee, 2009). In order to ensure

that all regions of the image constrain COR, the image is split into multiple bins and

thresholding is done separately for each bin. The optimization for COR is given as
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l̃c = arg minlc

(
Lwlc + Lnlc

)
:

Lklc = ‖g(Bk)− g

(∑
p

w̃k(p)P k(L̃k, Z̃, lc)

)
‖2, (5.17)

where k ∈ {w, n}, g(·) produces the first and second-order gradients, and the symbol

‘∼’ denotes the current estimates. A trust region reflective algorithm (Coleman and

Li, 1996) is used for optimizing Eq. (5.17), which is initialized with the previous COR

estimate. For the first scale and first iteration, we initialize the latent images as the

corresponding shock-filtered blurred images, MDFs as Kronecker delta, and COR at

the optical center.

5.4.2 Divide Strategy for MDFs and Images

Jointly estimating multiple MDFs or images is computationally inefficient, as the opti-

mization dimension scales-up linearly with each additional camera input. To this end,

we decompose the DL-BMD cost with prior, such that convexity is preserved and the

optimization dimension remains at par with that of normal camera, irrespective of the

number of cameras. The MDF and image estimation are given by

arg min
wn
‖Ãnwn −Bn‖2

2 + α‖wn − w̃w‖2
2 : ‖wn‖1 ≤ λ′n1 ,

arg min
Ln
‖M̃nLn −Bn‖2

2 + λn2‖∇Ln‖1,
(5.18)

where we have included the DL prior within the objective, but separated out the MDF-

sparsity prior as a constraint.

Claim 3: The individual optimizations in Eq. (5.18) are convex. Further, MDF estima-

tion with the DL prior (in Eq. (5.18)) has an equivalent LASSO form arg minwn ‖Cwn−

b‖2
2 : ‖wn‖1 ≤ λ′n1 , such that

C = ÃnT

Ãn + αI, and b = ÃnT

Bn + αw̃n. (5.19)
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Proof: MDF optimization problem is given as (Eq. (5.18)):

w̃n = arg min
wn
‖Ãnwn − IB

n‖2
2 + α‖wn − w̃w‖2

2︸ ︷︷ ︸
G

: ‖wn‖1 ≤ λ′n1 , (5.20)

We first prove the convexity property. The first term of G is convex in wn (proved in

Lemma S1). As the DL prior (the second term) is convex with respect to both the MDFs

{wn,ww} combined, it should be convex in wn for a given ww. Also, the feasible

set is convex (Boyd and Vandenberghe, 2004). Thus the MDF estimation is a convex

optimization problem. The convexity of latent image estimation directly follows from

the proof of Claim 2 (Eq. (5.13)).

We now proceed to derive an equivalent LASSO form. As Eq. (5.20) is a convex

optimization problem, ŵn is an optimal solution iff

∇G(ŵn) = 0 : ‖ŵn‖1 ≤ λn3 , where∇G(wn) = 2·
(
(ÃnT

Ãn+αI)wn−(ÃnT

IB
n+αw̃w)

)
(5.21)

Leveraging Eq. (5.21), we frame a new optimization problem as follows: As ∇G is

multi-dimensional, we consider the cost as the l2 norm of ∇G (to convert to a single-

valued objective function), i.e.,

w̃n = arg min
wn
‖∇G(wn)‖2

2 : ‖wn‖1 ≤ λn3 (5.22)

The new problem in Eq. (5.22) possesses several desirable properties (in addition to

the LASSO structure). (I) It is a convex optimization problem, i.e., any local minima

need to be a global minima and objective value of all minima should be the same. (II)

‖∇G(wn)‖2
2 ≥ 0 and ‖∇G(wn)‖2

2 = 0 iff ∇G(wn) = 0 (properties of norm). (III)

Optimal solution ŵn of the problem in Eq. (5.20) has to satisfy ‖∇G(ŵn)‖2
2 = 0, which

is a minima of Eq. (5.22) (by Property (II)). Property (III) implies that all solutions of

the optimization problem in Eq. (5.20) will also be solutions of the LASSO famework.

Also, since Eq. (5.21) is a necessary and sufficient condition, all solutions of the LASSO

framework will be solutions of the problem in Eq. (5.20) (by Properties (I-II)), thereby

establishing the equivalence of both the frameworks. �

A similar formulation as that of Eqs. (5.18)-(5.19) applies to the other camera as well.

We optimized for MDFs using the standard LASSO solver (Tibshirani, 1996) (following
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(Whyte et al., 2012; Cho and Lee, 2009)). Also, our divide strategy converts the latent

image estimation to the classic problem of TV-deblurring (Chan and Wong, 1998) (the

only difference is that M̃n is now in accordance with DL-model), which has excellent

convergence and efficient solvers (Perrone and Favaro, 2014). As image estimators

are independent, they can be parallelized for efficiency. This is made possible by our

decomposition of the DL-BMD problem while enforcing the DL prior.

5.5 Analysis and Discussions

In this section, we indicate the generalizability of our work to diverse camera set-ups.

Then, we analyse the effect of our prior and COR.

5.5.1 Generalizability of our Method

Our theory and method directly apply to DL cameras with entirely different settings.

Second, they hold well for identical cameras (fn = fw) or camera arrays (multiple lb),

wherein exposures are different (wn 6= ww or wn = ww) or identical (wn = ww).

Third, they generalize to the mature normal camera methods (lb = lc = 0 and wn =

ww) (Pan et al., 2016; Xu et al., 2013; Whyte et al., 2012). Further, our method can

seamlessly address partial and full exposure-overlaps ((Jeon et al., 2018; Park et al.,

2017; Wang et al., 2019a; Pashchenko et al., 2017; Mo and Sattar, 2018)), without any

modifications. Based on the previous discussions, we make the following remarks.

Remark 1: The motion blur model of the methods (Pan et al., 2016; Xu et al., 2013;

Whyte et al., 2012) admits only a depth invariant model, whereas motion blur in a DL

set-up warrants a depth variant model.

Proof: The pixel-mapping employed in single-lens model is given as (Whyte et al.,

2012)

x̂′ = λKR̂K−1x (5.23)

where λ normalizes the third coordinate of x̂′ to 1. Note that the mapping in Eq. (5.23)

is invariant to scene-depth, unlike the depth-variant mapping of DL system due to base-

line and COR (from Eq. (5.9)). Consider an arbitrary image-coordinate x0 with corre-

sponding scene-depth Z0. Let R̂{x0,Z0} be the optimal pose in Eq. (5.23) that equates
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to the homography-mapping of the DL system at x0 (i.e., x′ = x̂′, for x = x0). As

Eq. (5.23) is depth-invariant, fixing a pose suitable for x0 will concurrently fix the map-

ping at all other coordinates irrespective of their depth values. This clearly violates the

inherent depth-variant mapping of DL system at those coordinates. Consequently, the

PSF optimized for the coordinate x0, through multiple poses R̂t{x0,Z0} for t ∈ te, con-

currently fixes the PSF at other coordinates irrespective of their depth values; thereby

failing to model the depth-variant PSFs in a DL setup. �

Remark 2: The blur model of the methods (Pan et al., 2016; Xu et al., 2013; Whyte

et al., 2012) modulate the baseline with camera poses, but it must be independent for a

DL set-up (for scene-consistent disparities).

Proof: Motion blur model in single-lens system is given as (Whyte et al., 2012)

ÎnB =
1

tne

∫
tne

P n
(
R̂t(Y)

)
dt, (5.24)

where the world-coordinate system Y is defined with respect to the optical center (i.e.,

lb = lc = 0). In the DL blur model (Eqs. (5.2)-(5.3)), the effect of stereo baseline is in-

dependent of camera pose-changes, and the disparity relation between stereo image-pair

is due to the baseline (lb). Enforcing the single-lens model in the narrow-angle image

leads to ÎnB = (1/tne )
∫
tne
P n
(
R̂t(X + lb)

)
dt (where the world coordinate X is defined

with respect to wide-angle camera, as followed in Eqs. (5.1)-(5.2)). Evidently, the effect

of baseline in this case varies with pose-change R̂t, unlike the DL model. Specifically,

it characterizes an alien dual-lens set-up with its own physical lens-separation, and in

turn the scene disparities, getting modulated by pose-changes over time. �

Remark 3: The methods (Pan et al., 2016; Whyte et al., 2012; Xu et al., 2013) also

admit the ill-posedness that disrupts scene-consistent disparities.

Proof: This is a special case of Claim 1, wherein lb = lc = 0. �

Next, we show the generalizability of our algorithm to different types of DL set-up.

The image PSNR, VIF, IFC metrics and depth PSNR metric are shown in the Table

5.1 for the three DL-configurations: Narrow-Narrow, Narrow-Wide, Wide-Wide. We

consider the same exposure time for both cameras, 52mm focal length for narrow angle

camera and 26mm focal length for the wide angle camera. The values reported in the

Table 5.1 are averaged over three examples. As can be seen, our method performs con-

sistently better than the methods of (Xu and Jia, 2012; Mohan and Rajagopalan, 2018) in
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Set-up Metrics Blurred Xu et al. Mohan et al. Ours

N-N
Image

PSNR/IFC/VIF
27.27 / 1.75 /

0.23
19.90 / 1.08 /

0.22
29.21 / 2.30 /

0.36
31.03 / 3.04 /

0.43
Depth PSNR 29.22 15.83 29.50 30.35

N-W
Image

PSNR/IFC/VIF
27.33 / 1.78 /

0.23
19.86 / 1.13 /

0.22
26.50 / 1.95 /

0.31
30.50 / 3.10 /

0.42
Depth PSNR 28.51 15.29 28.56 31.11

W-W
Image

PSNR/IFC/VIF
27.87 / 1.97 /

0.27
14.56 / 0.94 /

0.17
25.90 / 2.04 /

0.32
30.64 / 4.40 /

0.56
Depth PSNR 30.15 13.88 28.56 30.62

Table 5.1: Generalizability to diverse DL set-ups (Symbols ‘N’ and ‘W’ represent narrow and
wide-FOV, respectively.): Our method consistently outperforms the methods of (Xu
and Jia, 2012; Mohan and Rajagopalan, 2018) in the PSNR, IFC and VIF metrics for
image and the PSNR metric for depth.

all three configurations. Specifically, in terms of Image/Depth PSNR, our method out-

performs (Mohan and Rajagopalan, 2018) by 0.82/0.85 dB for Narrow-Narrow setup,

4.00/2.55 dB for Narrow-Wide setup and 4.74/2.06 dB for Wide-Wide setup.

5.5.2 Effectiveness of the DL prior and COR

Table 5.2 summarizes the PSNR results for image/depth (averaged over five examples)

by ablating the DL prior and COR estimator. For creating synthetic dataset, exposure

overlap and COR are randomly sampled from 10 to 100% and −30 to 30 cm cube, re-

spectively. The unconstrained set-up we employed is narrow- and wide-FOV pair, with

fn = 52 mm, fw = 26 mm, and the former having twice the resolution (as in Samsung

S9+). Observe that for the prior-less case the depth information gets significantly cor-

rupted (i.e., PSNR drops by 7 dB!). This underlines the importance of resolving the

pose-ambiguity in dual-lens BMD. Further, the deblurring performance also drops by

2.3 dB in the prior-less case, possibly be due to the loss of reinforcement between the

narrow- and wide-angle costs (as discussed earlier). Further, the table reveals that both

image and depth accuracies deteriorate when COR issue is not addressed, i.e., image

and depth PSNRs drop by 1.6 and 1.3 dB, respectively.

To analyze the sensitivity of COR for narrow-angle and wide-angle configurations,

we considered images blurred with a common COR , and performed deblurring by per-

turbing the COR vector and using the true ego-motion (identically for both the config-
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PSNR
Blur

W/o Prior W/o Prior W/ Prior W/ prior
(dB) W/o COR W/ COR W/o COR W/ COR

Image 22.39 25.69 26.59 27.28 28.88
Depth 28.33 23.35 23.59 29.12 30.52

Table 5.2: Quantitative results of our method with and without the DL prior and COR. In par-
ticular, our DL prior reduces the ill-posedness by a good margin (i.e., by 7 dB, as
indicated in bold).
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Figure 5.3: Analysis: (a) Sensitivity of COR: Both narrow-angle and wide-angle configurations
are very sensitive to COR, with the former exhibiting relatively more sensitivity. (b-
c) Effect of image and depth noise.

urations). Figure 5.3(a) compares the average PSNR of deblurred images for different

COR approximations. The figure clearly shows a significant drop in deblurring perfor-

mance as the approximated COR deviates from the true COR. Also, note the detrimental

effect of the common COR approximation about the camera center (that is followed in

single-lens BMD methods). The figure also reveals higher sensitivity of COR in narrow-

angle configuration as shown by the higher rate of its performance-drop. This is due

to higher focal-length, and hence larger blur inherent in narrow-angle setup which is a

function of COR (as noted in Sec. 5.2).

5.5.3 Effect of Noise in Image and Depth Estimation

To analyze the effect of noise in our DL-BMD method, we experimented with blurry

images corrupted with additive white Gaussian noise. Standard-deviation of noise (in

pixels) is varied from 0 (noise-less case) to 5. Fig. 5.3(b) plots the average PSNRs of a

deblurred image and depth estimate corresponding to different noise levels. The average

PSNRs for deblurred image and depth-estimate is more than 25 dB and 29 dB, respec-

tively, over the entire standard-deviation range; this clearly reveals the noise-robustness

of our algorithm. Although we did not perform denoising in any examples, for very

high noisy levels, the blurred image-pair need to be denoised prior to deblurring. This
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Figure 5.4: DL configuration warrants a depth-variant transformation. (a) Model inaccuracies
of the homography model. Note the variation of PSF in Fig. (c) with respect to the
scene depth in Fig. (b). As the single-lens motion blur model is depth-invariant, the
model optimized for a fixed depth can fail for other depths, leading to ineffective
deblurring across depths (Fig. (e)).

is because noise can deteriorate image-gradients which are required for ego-motion es-

timation (Sec. 5.4).

The total variation prior in the DL-BMD cost is employed to curb ringing arti-

facts. We analysed the depth-dependency by adding additive white Gaussian noise in

disparity-map (following (Mandal et al., 2016; Liu et al., 2015; Riegler et al., 2016)).

The standard deviation (SD) of noise is varied from 0 to 40% of mean disparity, in the

disparity-map estimate in all iterations (a worst-case scenario). In Fig. 5.3(c), we plot

the results averaged over five trials for each SD-unit (for the example in Fig. 5.2), where

we utilize the metrics RMSE and bad pixel ratio for depth. Note that over the entire SD-

range, image-PSNR and depth-RMSE are reduced by only 0.875 dB and 0.622 pixel,

respectively, which clearly reveals our method’s robustness.

5.5.4 Uniqueness of the DL pixel-mapping over homography

The uniqueness of DL pixel-mapping is due to the latter’s depth-invariant nature, which

we illustrate with two experiments. For a camera-pose sampled from a real trajectory

(Köhler et al., 2012), Fig. 5.4(a) shows the best approximation error of the homography-
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mapping of normal cameras to the pixel-mapping of Eq. (5.9), optimized for a given

depth (under least-squares criteria). Notably, the homography fails to model the DL

pixel-wise mapping consistently over different depths, which clearly illustrates the unique-

ness of Eq. (5.9). Further, to analyze the depth-variant nature of PSFs, Figs. 5.4(b-

e) consider a camera trajectory and a 3D scene from (Scharstein and Szeliski, 2002).

Fig. 5.4(c) shows the corresponding PSFs (projected using Eq. (5.9)), which reveals

depth-dependency of blur, with lower depths exhibiting severe blurs relative to the far-

ther ones. Figure 5.4(e) shows the deblurred image-patches for different depths em-

ploying the normal camera method (Xu et al., 2013), optimized for a given depth; it

is evident that this approach is not quite successful due to the depth-dependency of the

blur, which clearly necessitates a new approach for DL-BMD.

5.6 Experimental Results

In this section, we extensively evaluate our proposed method on both synthetic and real

examples.

Comparison Methods: We considered (Pan et al., 2016; Xu et al., 2013) to represent

normal camera BMD. For computational cameras, we considered state-of-the-art stereo

BMD (Xu and Jia, 2012) and light field BMD (Mohan and Rajagopalan, 2018). For

depth-aware case, we considered the single-image BMD (Hu et al., 2014) and multi-

image method (Arun et al., 2015). For deep learning, we considered (Tao et al., 2018;

Nimisha et al., 2017) which represent recurrent and autoencoder networks, respectively.

Note that the publicly available code for (Chandramouli et al., 2018; Srinivasan et al.,

2017) require as input 4D light field, whereas the codes for (Pan et al., 2019; Lee et al.,

2018) are not available.

Metrics: For quantitative evaluation of image, we employ PSNR, IFC (Sheikh et al.,

2005), and VIF (Sheikh and Bovik, 2006). We have selected IFC and VIF because they

are shown to be the best metrics for subjective evaluation of BMD (Lai et al., 2016).

For qualitative evaluation, we provide the narrow-FOV image and (normalized) depth

estimated from deblurred image-pair or by algorithms (Hu et al., 2014; Arun et al.,

2015). We consider all methods for four examples and provide sparse comparisons for

others.
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Figure 5.5: Quantitative evaluations using objective measure (PSNR). Our method performs
competitively against the state-of-the-art, and produces the least depth errors.
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Figure 5.6: Quantitative evaluations using subjective measures (IFC, VIF). Our method per-
forms deblurring with the best aesthetics.

Quantitative Evaluation: Figures 5.5–5.6 provide objective and subjective measures

for different methods. First of all, both the measures of the state-of-the-art DL-BMD

(Xu and Jia, 2012) clearly reveal its high sensitivity, when it deviates from the as-

sumptions of synchronized and identical cameras, and layered depth scenes. This once

again emphasizes the need for an unconstrained DL-BMD method. For normal camera

methods (Pan et al., 2016; Xu et al., 2013), there is a perceivable drop in the depth

performance (due to Remarks 2-3), which clearly suggests their inadequacy in DL set-

up. While the inferior depth performance of (Arun et al., 2015) can be attributed to its

assumption of layered depth, for (Hu et al., 2014), it can also be due to its single image

restriction. As compared to our method, light field BMD (Mohan and Rajagopalan,

2018) is not quite successful (i.e., image/depth PSNR is less by 2.37/4.47 dB). This

can be attributed to its lens effect and assumption of synchronized and identical camera

settings. Our method outperforms deep learning methods (Nimisha et al., 2017; Tao

et al., 2018) by 3.50 dB and 2.72 dB for image and 4.39 dB and 4.36 dB for depth,

respectively. Based on the claims of (Nimisha et al., 2017; Tao et al., 2018) that they

generalize well for real-captured images, this performance degradation could be possi-

bly due to the unique characteristics of unconstrained DL blur.
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Blurry image Ours Mohan et al. Pan et al. Tao et al.

Xu et al. Xu et al. (DL) Arun et al. Hu et al. Nimisha et al.

Blurry image Ours Mohan et al. Pan et al. Tao et al.
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Blurry image Ours Mohan et al. Pan et al. Tao et al.

Figure 5.7: Synthetic experiments: The method of (Xu and Jia, 2012; Hu et al., 2014; Arun
et al., 2015) exhibits severe ringing artifacts and inaccurate depth estimates. The
results of (Pan et al., 2016; Xu et al., 2013) amply underline the shortcomings of
normal camera models. As compared to deep learning (Tao et al., 2018; Nimisha
et al., 2017) and light field BMD (Mohan and Rajagopalan, 2018), our method
retrieves distinct textual information. Also, we compare depth- and space-variant
GT and estimated PSFs (inset patches of blurry and our results).
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Blurry image Ours Mohan et al. Pan et al. Tao et al.

Xu et al. Xu et al. (DL) Arun et al. Hu et al. Nimisha et al.

Blurry image Ours Mohan et al. Pan et al. Tao et al.

Xu et al. Xu et al. (DL) Arun et al. Hu et al. Nimisha et al.

Blurry image Ours Xu et al. (DL) Nimisha et al. Tao et al.

Figure 5.8: Real experiments: (first example - indoor scene, second - outdoor scene, and third
- low-light scene). Our method is able to recover finer features at different depth
ranges as compared to the competing methods, and is able to faithfully preserve the
depth information.
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Qualitative Evaluation: Figures 5.7–5.8 provide visual results for synthetic (Scharstein

and Szeliski, 2002) and real experiments. We wish to highlight that ringing artifacts in

deblurring are mainly caused by ego-motion error, which can be either due to inac-

curate blur/ego-motion model or ineffectiveness of optimization. It can be seen that

depth estimation is also sensitive to ringing artifacts; one reason could be that ringing

deteriorates the feature matches required for depth estimation. The deblurred images

of (Xu and Jia, 2012; Arun et al., 2015) exhibit severe ringing artifacts (possibly due

to the assumptions on scene and ego-motion and capture settings). Also, note that (Hu

et al., 2014) produces erroneous layered-depth estimates (e.g., nearer depths appear to

be farther, as in Fig. 5.8, first example, chandelier). This is due to its sole restriction

to single image cues for depth sensing. The results of (Mohan and Rajagopalan, 2018;

Pan et al., 2016; Xu et al., 2013) amply demonstrate the inadequacy of light field and

single-lens BMD in the dual-lens setup, where the deblurring is not uniform over differ-

ent depth levels (e.g., in Fig. 5.7, second example, the closer books and farther windows

are not simultaneously accounted for) and exhibits perceivable ringing artifacts, (e.g.,

in Fig. 5.8, over the chandelier). The visual results of deep learning methods (Nimisha

et al., 2017; Tao et al., 2018) once again prove that they are inadequate to deal with DL

blur. When compared with the competing methods on all the examples, it is evident

that our DL deblurring method consistently accounts for features at different depths,

produces lesser ringing artifacts, and faithfully preserves consistent depth information.

5.6.1 Implementation Details

We used a PC with an Intel Xeon processor and a 16 GB RAM for all experiments,

and implemented our algorithm in MATLAB. For the scale-space based alternating min-

imization, we used 5 scales with 6 iterations each. The scaling factor for the ith scale is

selected as 1√
2

(i−1). For estimating COR (following Eq. (5.17)), we have employed the

MATLAB built-in function lsqnonlin. For depth estimation, we adopted the optical-

flow algorithm of (Liu et al., 2009) and employed the default parameters (as it pro-

vides a good trade-off between speed and accuracy). For optimizing the cost for MDF

(Eq. (5.19)), we used the LARS solver of (Efron et al., 2004) (which efficiently solves

LASSO problems). The regularization for the proposed MDF-prior α is adapted with

the scales as 5
(9−i)

2 (Note that a higher regularization is employed as MDF vectors have
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smaller values as compared to image). We have selected the sparsity regularization (λ3)

as 0.01 for both narrow-angle and wide-angle MDFs. We employed ADMM (Boyd

et al., 2011) to optimize the cost for latent-image with total-variation prior (Eq. (5.18)),

where we used the total-variation regularization as 0.005. For latent image estimation,

we consider grey-scale image until the final scale and 5th iteration (to reduce the com-

putational time). We found that for deblurring a 1280× 720 RGB narrow-angle image

(of maximum blur-length of 30 pixels) and a focal-length ratio of two, our unoptimized

MATLAB implementation took about 23 minutes to deblur the dual image-pair. A

detailed break-up of the time taken for the final scale, final iteration is as follows: opti-

mizing COR took 49.7s, estimating depth took 14.7s, MDF estimation took 56.4s, and

RGB latent image estimation took 39.4s. In contrast, the competing traditional methods

which specifically address multi-image deblurring (Xu and Jia, 2012; Arun et al., 2015)

took about 36 and 29 minutes, respectively. Even though, the competing deep learning

methods for single image deblurring took less than one second (see Table 6.1), those

methods are inadequate for dual-lens case.

5.7 Conclusions

In this chapter, we addressed the problem of blind motion deblurring for unconstrained

dual-camera set-ups. Our algorithm allows for arbitrary COR in the blurring process

and is incorporated in the optimization pipeline. That work revealed an inherent ambi-

guity in the BMD problem which hampers the scene-consistent depth cues embedded in

the image-pair. Towards this end, we introduced a convex and computationally efficient

prior. We showed the efficacy of the proposed prior which enforces scene consistent

disparities, leading to improved deblurring. Comprehensive comparisons with existing

state-of-the-art methods amply demonstrate the superiority and need of our method. As

an increasing number of modern cameras are employing dual-lens configurations, our

theory and method will be very relevant for steering further research in this field.

We focused in this chapter on restoration of unconstrained DL images blurred due

to only camera motion. In practice, motion blur happens due to object motion as well.

Therefore, a deblurring method that restricts blur due to only camera motion may not

work for dynamic scene blur (i.e., blur due to camera motion, object motion or both),
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and hence warrants a new method for the problem of dynamic scene deblurring in un-

constrained DL cameras. As addressing this problem in a traditional way is computa-

tionally expensive as it involves complex pipeline and high-dimensional optimizations,

we explore this problem using deep learning (in the next chapter).
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CHAPTER 6

Dynamic Scene Deblurring for Unconstrained Dual-lens

6.1 Introduction and Related Works

In practice, apart from camera motion, motion blur happens due to object motion (dy-

namic scene) as well. This renders those deblurring methods that are restricted to only

camera motion induced blur ill-equipped for several practical scenarios (Gao et al.,

2019; Nah et al., 2017). Consequently, there arises a need to seamlessly tackle blur

due to camera motion, dynamic objects, or both – the problem so called dynamic scene

blind motion deblurring.

As discussed in the previous chapter, there has been a growing trend in modern cam-

eras in employing unconstrained dual-lens (DL) cameras, i.e., two cameras with same

or different focal lengths, exposures and image resolutions (Mohan et al., 2019). This

flexibility supports a plethora of important applications such as capturing narrow and

wide field-of-view (FOV) with different focal lengths; HDR imaging (Park et al., 2017;

Bätz et al., 2014; Sun et al., 2010), low-light photography (Wang et al., 2019a), and

stereoscopics (Pashchenko et al., 2017) using different exposure times, whereas super-

resolution (Wang et al., 2019b; Jeon et al., 2018), visual odometry (Mo and Sattar,

2018; Iyer et al., 2018) and segmentation (Shen et al., 2017) employ nearly-identical

exposure times. However, all these applications are meant for input DL images that are

blur-free. But motion blur is an ubiquitous phenomenon in unconstrained DL cameras

(Mohan et al., 2019; Zhou et al., 2019; Xu and Jia, 2012) and there does not exist a

single method for dynamic scene deblurring for this popular imaging device.

As compared to single-lens methods, motion deblurring in unconstrained DL cam-

eras involves additional conformity conditions and challenges (Mohan et al., 2019;

Zhou et al., 2019). Zhou et al. (2019) showed that single-lens BMD methods, due

to their obliviousness to stereo cues, are inadequate for DL cameras. To enable vari-

ous DL-camera applications, unconstrained DL deblurring has to leverage stereo cues



and has to ensure scene-consistent disparities in deblurred image-pair. However, Mo-

han et al. (2019) showed that, albeit for the case of static scenes, conventional single-

lens deblurring methods applied to unconstrained blurred DL-images can easily violate

epipolar constraint (Hartley and Zisserman, 2003). A further challenge stems from the

narrow-FOV cameras popularized by today’s smartphones, which amplifies the effect

of both camera motion and object motion, thereby exacerbating motion blur issues.

More important, a unique challenge presented by today’s unconstrained DL genre

is due to its different exposure times and resolutions ((Mohan et al., 2019; Wang et al.,

2019a; Park et al., 2017; Bätz et al., 2014; Sun et al., 2010)). This unconstrained con-

figuration renders feature-loss due to blur in the two images different, e.g., image in

one view can have more degradation as compared to the other view due to more blur

due to large exposure time or low resolution. Consequently, typical methods produce

inconsistent deblurring performance between the left-right views. However, almost all

DL applications, especially those for stereoscopic 3D driven by the emerging demand

for augmented/virtual reality (such as stereo super-resolution (Wang et al., 2019b; Jeon

et al., 2018), style transfer (Chen et al., 2018; Gong et al., 2018), inpainting (Mu et al.,

2014; Wang et al., 2008), panorama (Zhang and Liu, 2015), etc.), warrant the input DL

images to be binocularly consistent, i.e., the left-right view has to have coherent fea-

tures as perceived by human eyes (Chen et al., 2013). Therefore, an unconstrained DL

deblurring method has to ensure consistency between the left-right views, the problem

we refer to as view-inconsistency, which is a hitherto unaddressed problem.

For unconstrained DL cameras, there exists only one deblurring method (discussed

in Chapter 5), however it restricts itself to only camera-motion induced blur. Basi-

cally, it models the motion blur in an unconstrained DL set-up, and devises an efficient

framework that decomposes the joint DL-BMD deblurring cost in individual images

to aid a low-dimensional optimization. This work reveals an inherent ill-posedness

in DL-deblurring due to non-identical exposure time that disrupts the desired epipolar

constraint, which it addresses using a prior on camera motion. However, that prior is

not effective when dynamic objects are present (Sec. 6.5.4). Second, as the main fo-

cus of the above-mentioned method is to preserve epipolar constraint in DL deblurring,

no attempts are made to address the problem of view-consistency. Third, it warrants

an iterative high-dimensional optimization and hence is computationally expensive as

compared to deep learning methods.
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However, for constrained DL-cameras, wherein both cameras share the same fo-

cal length, resolution and exposure time (with full overlap), there exist several dy-

namic scene deblurring methods. These methods can be broadly categorized into two

classes: Model-based optimization and model-agnostic deep learning methods. The

model-based optimization class proceeds via a complex pipeline of segmenting differ-

ent dynamic objects, estimating relative motion in the individual segments, and deblur-

ring and stitching different segments while suppressing possible artifacts in seams (Pan

et al., 2017; Sellent et al., 2016; Xu and Jia, 2012). Due to the presence of large num-

ber of unknowns, such as segmentation masks of dynamic objects, their depths, their

relative motions, etc., these methods either warrant more information or restrict them-

selves to limited scenarios. For example, (Pan et al., 2017; Sellent et al., 2016) warrant

multiple stereo image-pairs, whereas (Xu and Jia, 2012) restricts itself to blur due to

primarily inplane camera or object motions or both, and requires individual objects to

have uniform depth. Further, due to the complex pipeline and high-dimensional opti-

mizations involved, methods belonging to this class incurs heavy computational cost.

Specifically, (Pan et al., 2017; Sellent et al., 2016; Xu and Jia, 2012) rely on costly

optical flow calculations for segmenting different blur regions, and employ a highly

non-linear optimization framework to estimate the clean images.

The second class of model-agnostic methods greatly addresses the limitations of the

former class, as it learns from unrestricted data a mapping, that does not involve com-

plex pipelines and optimizations while deblurring. However, this class is an emerging

area for DL cameras, with only one existing method (Zhou et al., 2019). It works by em-

ploying an identical deblurring network for two views, which leverages scene cues from

the depth and varying information from two views to address spatially-varying blur. As

the method of (Zhou et al., 2019) restricts itself to constrained set-up, the questions of

ill-posedness and view-inconsistency do not arise (Zhou et al., 2019); but this is not the

case for unconstrained DL-cameras wherein two cameras can have different configu-

rations. Yet another issue in dynamic scene deblurring is due to its space-variant and

image-dependent nature of blur (Zhang et al., 2018), which is also not at all explored in

the only-existing DL dynamic scene deblurring method (Zhou et al., 2019).

For the first time in the literature, this chapter studies the problems of dynamic scene

deblurring in today’s ubiquitous unconstrained DL configuration. Our work belongs to

the less-explored model-agnostic deep learning class. We address three main problems
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in dynamic scene deblurring for unconstrained DL cameras, namely, enforcing view-

consistency, ensuring scene-consistent disparities, and guaranteeing stability while ad-

dressing space-variant and image-dependent nature of blur, all in an interpretable and

explainable fashion. In summary: (1). For view-consistency problem, we introduce a

coherent fusion module with interpretable costs. Specifically, it works by fusing the

unconstrained feature-pair to a single entity, which then sources a constrained feature-

pair while retaining useful complementary information. (2). We show that the epipolar

constraint in the deblurred image-pair can be enforced using an adaptive scale-space

approach. Though adaptive scale-space means directly changing the respective param-

eters in model-based optimization methods, there is no analogous flexibility in deep

networks, hitherto, typically owing to their perceivance as a black-box. This we address

using signal processing principles. (3). To address the space-variant, image-dependent

nature of blur, we extend the widely applicable atrous spatial pyramid pooling (ASPP)

(Chen et al., 2017). Basically, it provides freedom for a neural network to produce a

‘variety’ of space-variant and image-dependent receptive fields and filter-weights. We

also contribute an unconstrained DL blur dataset to aid further exploration in this area.

Our main contributions can be summarized as:

• As a first, we address the pertinent problem of view-inconsistency inherent in
unconstrained DL deblurring, that forbids most DL-applications. To this end, we
propose an interpretable coherent-fusion module.

• Our work reveals an inherent issue that disrupts scene-consistent depth in DL
dynamic-scene deblurring. To address this, we introduce a memory-efficient
adaptive multi-scale approach for deep learning based deblurring.

• To address the space-variant and image-dependent (SvId) nature of dynamic scene
blur, we instil the SvId property in the widely-used deep learning module: atrous
spatial pyramid pooling (Chen et al., 2017).

• Our proposed approach based on the above three modules achieves state-of-the-
art deblurring results for the popular unconstrained DL set-up, and acts as a po-
tential preprocessing step for further DL applications.

In what follows, we systematically bring out these problems one-by-one, reason the

inadequacies of the existing approaches in tackling these issues, and propose solutions

to ameliorate these inadequacies.
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(a) Standard DL network (b) Coherent Fusion Module

Figure 6.1: View Consistency: (a) Network Architecture of standard DL networks: when iden-
tical left-right networks process imbalanced signal, deblurring will be unidentical.
(c) Coherent module to be placed in nodes {A,B} and {C,D} to enable feature
sharing in order to create a balanced, yet high-feature output-pair.

6.2 View-inconsistency in Unconstrained DL-BMD

As traditional stereo cameras typically employ a constrained set-up, most applications

based on DL-images are designed for symmetric or view-consistent inputs. However,

present-day dual-lens cameras employ different resolutions and exposure durations to

enable extended applications (Wang et al., 2019a; Park et al., 2017; Bätz et al., 2014).

An important problem stems from this versatile configuration: as here the feature-loss

due to image resolution and motion blur can be different in the left-right views, the

constrained-DL BMD methods (e.g., (Xu and Jia, 2012; Zhou et al., 2019)) naively

applied to unconstrained case results in view-inconsistent outputs and hence forbids

the use of almost all existing stereo methods. The reason for this view-inconsistency

is due to their assumption that the input stereo images need to have identical resolu-

tions and coherent blur (or fully overlapping exposure-times). In particular, (Xu and

Jia, 2012) works by deconvolving the blurred images individually with identical PSFs,

whereas (Zhou et al., 2019) employ symmetric, identical network for left-right images,

and hence both methods warrant constrained DL inputs. The only existing deblurring

method for unconstrained DL (Mohan et al., 2019) also fails to produce view-consistent

output for unconstrained case, because there exists no means of feature transfer between

the two-views (specifically, it works by deblurring two images independently).

To address the view-inconsistency problem, we resort to a Deep Learning based

solution. In order to motivate our solution, first we analyse the inadequacy of the
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only-existing deep learning DL-BMD method (albeit developed for constrained set-

up) (Zhou et al., 2019). Note that there exist no deep learning methods for the case of

unconstrained DL. We first briefly review the the working of (Zhou et al., 2019). As

shown in Fig. 6.1(a), it consists of symmetrical networks for left-view and right-view

images, with both networks sharing identical weights (in order to not scale-up trainable

parameters as compared to that of single-lens methods (Zhou et al., 2019)). Note that a

similar architecture is used in other DL applications, such as style transfer (Gong et al.,

2018; Chen et al., 2018) and super-resolution (Wang et al., 2019b; Jeon et al., 2018).

Here, the mapping from blurred images {BL,BR} to deblurred images {F̂L, F̂R} can

be given as

F̂L = T
(
BL

Φ, f
L
Φ,i,W � fLΦ,enc + W � fR→LΦ,enc ,d

L
)
,

F̂R = T
(
BR

Φ′ , f
R
Φ′,i,W

′ � fRΦ′,enc + W′ � fL→RΦ′,enc,d
R
)
,

(6.1)

where the sets Φ and Φ′ captures the resolutions and exposures of the left-right views,

and fi is ith intermediate-features of encoder which are fed-forward to decoder and

fenc is encoder-output. Bilinear mask W (with W = 1 −W) combine left-view and

right-view encoder-outputs after registration (denoted by ‘→’) for view-aggregation,

and {dL,dR} are depth-features for depth-awareness.

The primary reason for the success of the generic DL architecture in producing

view-consistent output for constrained DL set-up is that mappings in the left- and right-

view networks are identical (T (·) in Eq. (6.1)), and more important, in like manner

signal flowing in those networks are of identical nature (i.e., Φ = Φ′). However, as

shown in Fig. 6.1(a) using yellow and green highlights, the same architecture leads to

view-inconsistency in unconstrained DL set-up because now signal flowing in those

identical networks are of different nature (i.e., Φ 6= Φ′). A similar reasoning of view-

inconsistency is valid for single-image deep learning methods as well (the main dif-

ference here is that the left- and right-view networks, though can be parallelized as in

Fig. 6.1(a), are decoupled, i.e., W = W′ = 1 in Eq. (6.1)).
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6.2.1 Coherent Fusion for View-consistency

View-inconsistency in the generic DL deblurring architecture (Fig. 6.1(a)) occurs be-

cause there exist no avenues to enforce that the nature of signals flowing in the left-

and right-view networks identical. Therefore, a method to address the problem of view-

consistency has to ensure signal flowing in left- and right-view networks to be of iden-

tical nature ‘irrespective’ of Φ 6= Φ′ or Φ = Φ′. Note that a constrained DL setting

is a special case of unconstrained DL settings. As followed in the generic DL archi-

tecture, a fusion module inserted only between the final stage of encoder and initial

stage of decoder (i.e., node {C,D} in Fig. 6.1(a)) is not sufficient for unconstrained

DL configuration, because even if the nature of signal is made identical in this node,

still the imbalance persists because of the standard U-net configuration due to the feed-

forward connection from intermediate stages of the encoder to respective stages of the

decoder. A careful inspection of the generic DL architecture reveals that the view-

inconsistency stems from nodes {A,B} and {C,D}, where the former creates imbal-

ance in the encoder inputs and hence all feed-forward inputs to the decoder and network

output, whereas the latter creates imbalance in the decoder inputs.

To this end, we introduce a coherent fusion module with two self-supervision costs

in those two nodes, which enforce the following conditions: (a) The nature of output

signals in the left-right views are identical; (b) Both the outputs exhibit the properties of

the input with higher information. We select the high-resolution image as the reference

(say, the right-view) since reducing resolutions leads to irrecoverable information-loss

(e.g., due to anti-aliasing, the basic issue addressed in super-resolution). Without loss of

generality, we assume that the right-view has higher resolution. Considering the left-

right view input to the module as {xL,xR}, the coherent fusion module maps {xL,xR}

to left-right view output {yL,yR} as

ys = W � xR→C + W � xL→C ; (6.2)

yL = WL � ys
C→L + WL � xL; (6.3)

yR = WR � ys
C→R + WR � xR. (6.4)

where xR→C warps the right-view input xR to the center-view, � is the Kronecker

103



1(a) I/p (left) 1(b) I/p (right) 1(c) Mask W 1(d) O/p (left) 1(e) O/p (right)

2(a) I/p (left) 2(b) I/p (right) 2(c) Mask W 2(d) O/p (left) 2(e) O/p (right)

Figure 6.2: Visualization of Coherent Fusion Module: Overall high magnitude of mask W
reveals that the view with rich information predominantly sources the information-
sink, with exceptions at occlusions or view-changes where information is present
only at the other view. In Figs. 1-2(b), observe the relatively rich information
in right-view inputs where W has high magnitudes overall (Figs. 1-2(c)). Also,
compare the coat behind the sailor in Figs. 1(a-b) or the specularity-difference
in the pillar or bright-window in Figs. 2(a-b) where only the left-view contains
the information and hence W magnitudes in those regions are low (Figs. 1-2(c)).
The coherent-fusion costs LLR + LRR aid this phenomenon, which results in a
high view-consistent deblurring performance in both the left- and right views (see
Figs. 1-2(d-e)).

product, and {W,WL,WR} are image-dependent bilinear masks produced by a simple

mask-generation network (as in (Zhou et al., 2019; Gong et al., 2018; Chen et al.,

2018)), e.g., W is a function of the error between xL→C and xR→C , where 0 �W �

1, W + W = 1. Also, the two self-supervision costs are

LLR = ‖yL→R − yR‖2
2 and LRR = ‖yR − xR‖2

2. (6.5)

In words, Eq. (6.2) fuses the input left-view and right-view features warped to the

center-view (using W) to form intermediate feature ys; Eqs. (6.3)-(6.4) create the out-

put left-view (and right-view) features by merging the inverse-warped intermediate fea-

ture and the input left-view (and right-view) features using WL (and WR). In Eq. (6.5),

the cost LLR minimizes the means square error (MSE) between the output right-view

feature and the output left-view feature warped to the right-view, whereas the cost LRR

minimizes the MSE between the output and input right-view features.

We now attempt to provide a high-level interpretation of how this approach ensures

view-consistency. As shown in Fig. 6.1(b), the first part of the coherent fusion module

acts as an information sink, which accumulates information from the (possibly asym-

metric) input left-right views to form a single center-view information source. Note
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that the information taken from different views are image-dependent (through mask

W). This is illustrated using an example in Fig. 6.2, where the overall high magnitudes

of mask W reveal that the input-image in the view having relatively rich information

(here, the right-view) predominantly sources the information-sink, with exceptions at

occlusions or view-changes where information is present in only the other view (e.g.,

observe the overall high-magnitudes of mask for the right-view image which contains

more information, except at the regions of coat behind the sailor in Fig. 6.2(a) or the

difference in specularity behind the pillar or in the bright-window in Fig. 6.2(a), where

right-view image does not have sufficient information). Finally, the single center-view

information sources the output left-right views symmetrically, i.e., two signals with

identical nature, with a provision to fill the occlusion in left-right views which is not

present in the center-view (but present in the input left-right view information) through

masks {WL,WR}. Note in the Fig. 6.2(d-e) that the deblurred output have identical,

rich information, with no holes due to occlusion. We now proceed to discuss the im-

portance of the two costs. (For the sake of simplicity, we assume that occlusions and

specularities in stereo images are negligible.)

Remark 1: The mapping of the coherent fusion module (Eq. (6.2)) minimizes indi-

vidual costs LLR and LRR. Further, both costs LLR and LRR are necessary to satisfy

the conditions: (A) The nature of outputs in the left-right views identical; (B) The two

outputs exhibit the properties of the input with higher information.

Justification: To justify the first part, it is sufficient to show that there exists atleast a case

where the mapping in Eq. (6.2) attains the least objective (zero) for the costs LLR and

LRR (as LLR, LRR ≥ 0). It is evident from Eq. (6.2) that the cost LLR = 0 when WL =

WR = 1, and LRR = 0 when W = WR = 1. To justify the second part, we show that

criteria that minimize LLR satisfies the Condition A but not necessarily Condition B;

similarly, criteria of LRR satisfies the Condition B but not necessarily Condition A, and

finally, the common criterion of LLR and LRR satisfy both Conditions A and B. For

brevity, we refer to “first-view is sourced by second-view” if the first-view’s output is

formed by the second-view’s input. From Eq. (6.5), the cost LLR = 0 implies yR = yL,

(i.e., Condition A). For non-identical left-right inputs in general, the cost LLR = 0

when the left- and right-views are sourced by only right-view (i.e., W = WL = 1 in

Eq. (6.2)), or only left-view (i.e., W = 0,WR = 1), or a combination of left- and

right-view (i.e., 0 ≺W ≺ 1,WL = WR = 1). Clearly from Eq. (6.5), LRR > 0 for
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the last two cases, as yR 6= xR (thereby violating Condition B). Similarly, LRR = 0

implies yR = xR, (i.e., condition B). The cost LRR can be zero when right-view, but not

left-view, is sourced by right-view (i.e., W = WR = 0) or both right and left view are

sourced by the right view (i.e., W = WL = 1). For the first case LLR > 0, as yR 6= yL

(thereby violating Condition A). Resultantly, the common criterion that minimizes LLR

and LRR is when both the left- and right-views are sourced by only right-view (which

satisfies both Conditions A and B), which proves the remark. (Relaxing the assumption

on occlusions and specularities, the word “sourced” becomes “predominantly sourced”,

wherein occlusion and specularity information will be passed to left- and right-view

outputs by the left-and right-view inputs, respectively.)

The implication of this module spans beyond the deblurring problem. In particular,

existing deep learning based DL applications are designed for constrained set-up (e.g.,

style transfer (Gong et al., 2018; Chen et al., 2018) and super-resolution (Wang et al.,

2019b; Jeon et al., 2018)), and hence fail to produce view-consistent results for today’s

popular unconstrained set-up (due to the same reason as that of deblurring). Our Co-

herent Fusion Module can potentially aid in removing this limitation and can serve as a

basic block for view-consistency in future deep learning works for unconstrained DL.

6.3 Scene-inconsistent depth in Unconstrained DL-BMD

Though the generic DL network with coherent fusion (in Sec. 6.2) enforces view-

consistency, it need not encode scene-consistent depth while deblurring. Note that

scene-consistent depth is important for further DL applications, such as augmented

reality, 3D reconstruction, and scene understanding (Innmann et al., 2019; Lv et al.,

2018; Zhang et al., 2011). A DL image encodes scene-consistent depth if the epipolar

constraints are satisfied (Hartley and Zisserman, 2003), i.e., in a typical stereo camera,

horizontal disparities of image-features are consistent with scene-geometry and vertical

disparities are negligible (Xiao et al., 2018; Fusiello and Irsara, 2011; Fusiello et al.,

2000; Loop and Zhang, 1999). For the scenario of dynamic objects, in general, a clean

DL image with scene-consistent depth is obtained when both images are captured at

the same time-instant; otherwise, world-position of dynamic object(s) in one-view need

not be the same in the other-view and hence violates epipolar constraints. Next, we
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Figure 6.3: Scene-consistent Depth: (a) As centroid of blurred images need not align for un-
constrained case, deblurring violates epipolar constraint. (b) The discrepancy in
unconstrained DL deblurring can be solved using a scale-space approach, where
networks at lower scales can be derived from the top-most one.

show that standard deep learning based deblurring methods developed for single-lens

and constrained DL, directly applied to unconstrained DL results in a similar depth-

inconsistency issue as that in the case of dynamic objects.

A motion blurred image encodes a video sequence over its exposure time (Jin et al.,

2018; Purohit et al., 2019); in particular, blurred image is formed by the summation of

clean frames of that video sequence (Whyte et al., 2012; Mohan et al., 2019). Con-

sidering an unconstrained DL exposure setting, i.e., exposures need not be identical

and fully-overlapping (as in (Park et al., 2017; Bätz et al., 2014; Wang et al., 2019a;

Pashchenko et al., 2017)), blurred image-pair {BL,BR} in the left-right views is given

as

BL =
1

tL

∫ tL

0

LLt dt, BR =
1

tR − t0

∫ tR

t0
LRt dt, (6.6)

where {LLt ,LRt } is the clean DL image-pair at time-instant t, and [0, tL] and [t0, tR]

are respectively the exposure times in the left-right views. Note that the constrained

DL setting (in (Zhou et al., 2019; Pan et al., 2017; Sellent et al., 2016; Xu and Jia,

2012)) is a special case of Eq. (6.6), where t0 = 0 and tL = tR which implies identical,

fully-overlapping exposures.

Standard deep learning based deblurring methods works by learning a mapping from

blurred image-pair to a clean image-pair located at a particular time-instant (which we

refer to as pivot). As discussed earlier, left- and right-view pivots for dynamic scenes

should match at the same time instant for scene-consistent depth. In deep learning based
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approaches, pivots are typically selected at the middle of exposure time (Zhou et al.,

2019; Tao et al., 2018; Jin et al., 2018) (otherwise ill-posedness exists in learning as re-

versing the arrow of time produces the same blurred image but maps to a different clean

image). This scheme is apt for constrained setting, as it automatically results in a clean

image-pair with scene-consistent depth, i.e., {FL
t′ ,F

R
t′′} where t′ = t′′(= tR/2 = tL/2).

However, for partially overlapping exposures, it causes serious binocular inconsistency

as t′ deviates from t′′ (as illustrated in Fig. 6.3(a)). Further, even if the pivots are chosen

as some M th and N th fraction of exposure times, the deblurred image-pair (in general)

will still exhibit binocular inconsistency, with severity increasing with the separation

between the pivots
(
M · tR and N · (tL − t0)

)
. In fact, for an unconstrained exposure

where timings {tR, t0, tL} can freely vary, there does not exist a unique choice of pivots

(or M and N ) which will produce scene-consistent depth.

Therefore, a method to address the problem of scene-inconsistent depth has to adap-

tively select pivots in accordance with input blurred image-pair (via exposure timings).

In particular, it has to establish a mutual agreement between the left- and right-view

images to arrive at an intersecting pivot. Since single-image methods for DL operate

by independently reusing the same network for the two views (Mohan et al., 2019; Zhou

et al., 2019), a mutual agreement cannot be established between the views. Even though

the generic DL architecture (in Fig. 6.1(a)) promotes a signal-flow between the views,

i.e., by adding registered encoder-output of one view to encoder-output of the other

view (in node {C,D}), this registration hinders the control on pivots; but, registration

is indispensable for coherently adding the two encoder-outputs (Zhou et al., 2019; Chen

et al., 2018; Gong et al., 2018). Further, the prior developed in (Mohan et al., 2019)

to tackle scene-inconsistent depth problem is confined to only camera-motion induced

blur and is inadequate for dynamic scenes (justification is provided in Sec. 6.5).

We first provide an outline of how we address this problem of scene-inconsistent

depth. We show in Sec. 6.3.1 that if DL deblurring is performed in lower scales (i.e.,

on decimated DL blurred images), the problem of depth discrepancy becomes less se-

vere. This motivates our adaptive scale-space approach for unconstrained DL deblur-

ring where we employ multiple network-levels (that correspond to increasing image-

scales, as shown in Fig. 6.3(a)). For a given DL blur input, we start deblurring from an

appropriate lower scale where the depth discrepancy is negligible in order to produce

scene-consistent deblurred results in that scale. Then, the deblurred results in lower
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scales are employed to progressively correct depth inconsistency in subsequent higher

scales till the fine scale is reached. For a constrained DL case, only one network-level

is sufficient (as in (Zhou et al., 2019)), but for an unconstrained DL case, as depth

discrepancy becomes higher more network-levels are required.

However, existing scale-space approach (Gao et al., 2019; Tao et al., 2018; Nah

et al., 2017) in this regard has several major limitations. First, as it is typically de-

signed for a pre-determined network-levels (exactly three) it imposes an upper limit

on allowable depth discrepancies, and hence becomes ineffective for a large class of

unconstrained DL inputs. Second, simply increasing network-levels is not desirable

as it calls for independent network-weights for different image-scales which escalates

the memory requirement. Third, as the existing approach employs the same network-

levels for all inputs, it increases the computational cost (with respect to both FLOPs

and processing time) due to sequentially processing through all levels irrespective of

constrained and various unconstrained cases. Our adaptive scale-space addresses these

limitations as follows: We address the first two limitations using signal processing prin-

ciples in Sec. 6.3.2, where we show how to optimally convert a fine-scale network to a

multi-scale network by reusing the same weights, thereby allowing any desired number

of multi-levels while not escalating the memory requirement. To optimize the compu-

tational cost, we devise a training and testing strategy in Sec. 6.6.1 which appropriately

selects the lower scale depending on the input case, and employing the technique noted

before, we employ our single-scale network to derive the required multi-scale network.

In the following, we elaborate our adaptive scale-space approach in detail.

6.3.1 Adaptive Scale-space for Scene-consistent Depth

Following (Zhou et al., 2019; Tao et al., 2018; Jin et al., 2018), we consider the standard

choice of pivot. i.e., at the center of exposure time or the centroid of blurred images. As

discussed earlier, this choice of pivot for an unconstrained DL set-up results in deblurred

left-right images at different time-instants, e.g., time-instants {t′, t′′} in Fig. 6.3(a). As a

result, a scene-point with respect to one view can undergo different pose-changes in the

other view due to object motion or camera motion or both, thereby leading to disparities

that are scene-inconsistent. We now attempt to quantify this disparity error.
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Let the world coordinate of a scene-point at time-instant t′ is X; then its correspond-

ing image-coordinates at the same pivot t′ in the left- and right-views are respectively

{KL
(
X
Z

)
,KR

(
X+lb
Z

)
}, where KL and KR are the intrinsic camera matrices of left- and

right-views, lb is the stereo baseline, and Z is the actual scene-depth (Mohan et al.,

2019). The matrix K is of the form diag(f, f, 1), where f is the focal length in pixels

which is proportional to the number of image-rows or columns (Whyte et al., 2012; Mo-

han et al., 2019). Note that this case produces scene-consistent depth as the right-view

sees the same world-coordinate as the left-view, displaced by the baseline. Constrained

DL deblurring belongs to this category of intersecting pivots.

Next, suppose that the scene-point X has undergone a rotation and translation R

and t at time-instant t′′ (i.e., RX + t, with corresponding depth Z ′), and the left and

right-views have pivots at {t′, t′′} (as shown in Fig. 6.3(a)). In this case, corresponding

image-coordinates become {KL
(
X
Z

)
,KR

(
RX+t+lb

Z′

)
}. Clearly, the latter case exhibits

a scene-inconsistent offset in the right-view as compared to the previous case, which is

given as

∆xR = KR

(
X + lb
Z

− RX + t + lb
Z ′

)
, (6.7)

where ∆xR is the image-coordinate discrepancy which contributes to scene-inconsistent

depth. Note that unlike camera motion induced blur (Mohan et al., 2019), R and t for

dynamic scenes can vary with scene-points due to independent object motion. Now

consider that we decimate the left-right blurred images by a factor of D(> 1), i.e.,

image resolutions are scaled-down by D and hence the focal lengths (in pixels) will

be scaled by 1/D. Therefore the resultant image-coordinate discrepancy in Eq. (6.7)

becomes (Hartley and Zisserman, 2003; Whyte et al., 2012)

∆xRD = D∆xR, where D = diag
{

1

D
,

1

D
, 1

}
. (6.8)

An important insight from Eqs. (6.7)-(6.8) is that image-coordinate discrepancies

get scaled down in accordance with decimation factors. This motivates our adaptive

scale-space approach (Fig. 6.3(b)). First, we judiciously select a decimation factor

that reduces the maximum discrepancy within a sensor-pitch, so that the epipolar con-

straints hold good in the discrete image-coordinate domain (Innmann et al., 2019; Hart-

ley and Zisserman, 2003). Next, we consider the coherent deblurred image-pair from
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the selected scale as the reference to centroid-align the binocularly inconsistent blurred

image-pair in the higher scale (via registration), which similarly produces a coherent

deblurred image-pair. This process is repeated till the fine-scale. Note that our registra-

tion approach is similar to the video deblurring method (Su et al., 2017) where a blurred

frame is used as the reference to centroid-align its neighbouring blurred frames, which

together produce a coherent deblurred frame. Further, employing deblurred image from

a coarse scale as the reference for higher scale is standard practice in conventional de-

blurring methods (Whyte et al., 2012; Pan et al., 2016; Mohan et al., 2019).

The scale-space approach has not been explored in deep learning based DL de-

blurring. In addition, existing scale-space methods for single image deblurring (Gao

et al., 2019; Tao et al., 2018; Nah et al., 2017) restrict themselves to fixed decima-

tion scales and limited network-levels owing to memory consideration. The main rea-

son is that a single-level network trained for fine image-scale is seldom effective for

lower image-scales, and hence necessitates independent trainable parameters in indi-

vidual network-levels (Gao et al., 2019). More important, how to adapt a network

trained for an image-scale to be applicable for lower image-scales without accentuating

the memory requirement is still an open question and has significant potential; e.g., it

allows a single-level network to be extended as a multi-scale network with diverse dec-

imation scales and unconstrained multi-levels (as required for our adaptive scale-space

approach), and it enables a network trained with high-resolution images to effectively

accommodate inputs of lower-resolutions (possibly due to camera-constraints). To this

end, we reveal an untapped potential in our DL deblurring architectures which allows

the above-mentioned memory-efficient scheme via a simple yet effective transformation

based on signal processing principles (which we discuss next).

6.3.2 Memory-efficient Adaptive Scale-space Learning

In this section, we analytically reason the well-known empirical observation in scale-

space literature that a network trained for fine image-scale is not effective for lower

image-scales (Gao et al., 2019; Tao et al., 2018; Nah et al., 2017). Based on it, we alle-

viate in our deblurring network the aforementioned issue to a large extent via a suitable

transformation which warrants no new parameters. This paves the way for memory-

efficient adaptive multi-scale approach by appropriately stacking networks suitable for
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various decimation scales (derived from the fine-scale network).

We briefly review some signal processing concepts used here (Oppenheim and Schafer,

2014). For sake of simplicity, we consider one-dimensional signal representation. We

denote the frequency spectrum of a discrete signal x(n) by X(ω) (where ω is the fre-

quency domain). The convolution of x(n) and y(n) (denoted by x(n) ∗y(n)) results in

a frequency spectrum X(ω)Y(ω). Decimating a signal x(n) by a factorD first removes

its high-frequency content (via anti-aliasing filter) and then expands the frequency spec-

trum by D. In contrast, interpolating a signal x(n) first compress the frequency spec-

trum by D and then removes its high-frequency content (via anti-imaging filter). We

denote the decimation and interpolation by X↓D and X↑D, respectively. In general, dec-

imation followed by an interpolation (i.e., (X↓D)↑D) is not an inverse operation due to

anti-aliasing operation. For brevity, we refer to “a particular feature of X(ω) matches

Y(ω)” if that feature of X is present in Y as it is or as in a decimated form.

Before going into details, we provide an outline of this section. In a scale-space

network, the output of lower-scale network should be the decimated version of the fine-

scale network-output (Gao et al., 2019; Tao et al., 2018; Nah et al., 2017). This implies

that frequency spectrum of lower-scale network-output must match to that of fine-scale

network-output (except at those high-frequency features lost due to decimation). Our

DL deblurring network (as in Fig. 6.1) maps the input via a composition of individ-

ual functions, which are realized using a cascade of convolutions, non-linearities (e.g.,

ReLu or Sigmoid), decimations in encoder and interpolations in decoder, etc. Resul-

tantly, for output features of lower-scale networks to match that of fine-scale network,

all those individual functions must map to matching features for all image-scales. How-

ever, we show (in Remark 3) that directly employing the fine-scale network in lower-

scales maps to complimentary features for convolutions, and hence fails to produce

matching features in lower-scales. Further, we show that our proposed transformation

alleviates the aforementioned issue of convolutions. Also, we show that this property

of transformation generalizes to other network-functions as well, as required in a scale-

space network. Finally, we demonstrate some practical utilities of our approach.

Assume that our DL deblurring network is optimally trained for the fine-scale. Since

the coherent fusion (Sec. 6.2.1) creates symmetric networks for the two views, the in-

ference derived from the network for a particular view is valid for the other as well. In
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frequency domain, the overall network-mapping for a view is

Y(ω) = X(ω) + T
(
X(ω)

)
, (6.9)

where Y is the output of the network and X is the respective output of the first coherent-

fusion module (at node {A,B} in Fig. 6.1(a)), and T (·) is the mapping of encoder-

decoder network which involves a series of convolutions and other non-linear opera-

tions. Next, consider that the network optimized for the fine-scale (Eq. (6.9)) is directly

employed for a lower image-scale (D > 1). For decimated input images, the costs of

the first coherent fusion module (Eq. 6.5) enforces its new output as a decimated version

of its fine-scale output (X(ω)). Therefore, the network-mapping becomes

Y′D(ω) = X(ω)↓D + T
(
X(ω)↓D

)
, (6.10)

We claim that considering the fine-scale network as a black-box for other lower-

scales (i.e., Eq. (6.10) is not optimal as it maps to complimentary features, whereas the

following network-mapping addresses this limitation:

YD(ω) =

(
X(ω)↓D↑D + T

(
X(ω)↓D↑D

))
↓D
. (6.11)

We assume that anti-aliasing and anti-imaging filters in decimation and interpolation

(Oppenheim and Schafer, 2014) are ideal, but our training procedure discussed at the

end of this section relaxes this. As compared to Eq. (6.10), basically Eq. (6.11) in-

terpolates the network-input before feeding to the network, and finally decimate the

network-output. We attempt to provide some intuitions. Suppose that the transforma-

tion T (·) in the fine-scale (in Eq. (6.9)) extracts/maps features in a particular frequency

band (wanted features), whereas suppresses features in the remaining frequency band

(unwanted features). Then to leverage the same transformation T (·) for lower-scales

and yet retain those wanted features (as required in a scale-space network), the domain

of the wanted features for lower scales should be identical as that of fine-scale. How-

ever, decimation of inputs in lower-scales (as followed in Eq. (6.11)) alters the domain

of frequency features by expanding the frequency spectrum, and hence it extracts/maps

complementary features instead of wanted features. To this end, Eq. (6.11) initially in-

terpolates the decimated inputs in lower scales in order to make the domain of wanted
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Figure 6.4: Memory Efficient Scale-space Learning: (a-c) If a filter is optimized for a particular
signal, then the same signal scaled will not produce a similar response, unless the
signal is matched to the original version. (b) Feature-matching is performed in a
standard network (Zhou et al. (2019)) and ours. Albeit a simple technique, both
networks yield superior performance.

features identical for all scales. Finally, Eq. (6.11) decimates the network-output which

scales down the discrepancies in accordance with Eq. (6.8). This technique, though a

simple one, extends the applicability of typical deep networks for different resolutions

other than the one trained for (as shown by experiments in Fig. 6.7(a)).

In what follows, we justify our claim that the transformation in Eq. (6.11) is better

than Eq. 6.10 for lower image-scales. We first consider the case of convolution, which

maps an input tensor f with depth d to a tensor g with depth d′ as

gj =
d∑
i=1

f i ∗ h{i,j} : 1 ≤ j ≤ d′, (6.12)

where gj (the jth layer of g) is produced by aggregating the convolution of f i and

filters h{i,j} ∀i. In particular, f in a decoder stage is obtained by concatenating feed-

forward encoder features and decoder features (Zhou et al., 2019), whereas the standard

residual block (i.e., gj =
∑d

i=1 f
i ∗ h{i,j} + f i) and atrous spatial pyramid pooling (i.e.,

gj =
∑d

i=1

∑p
k=1 f

i ∗ h{i,j,k} ) (Chen et al., 2017) has equivalent convolution filter as

h
{i,j}

= h{i,j} + δ(i, j) and h
{i,j}

=
∑p

k=1 h
{i,j,k}, respectively.

Remark 2: Convolution filters optimized to map certain frequency features in the fine-

scale (Eq. (6.9)) need not map to matching features in lower scales (Eq. (6.10)), whereas

with the transformation in Eq. (6.11) map to matching features.
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Justification: The mappings in both Eqs. (6.10) and (6.11) employ identical convolution

filter in fine-scale as well as lower scales (via the same T (·)), but the difference is that

for lower-scales the former gets a decimated input, whereas the latter gets an interpo-

lated version of the decimated input (i.e., with the same resolution of fine-scale). In

frequency domain, convolution mapping (Eq. (6.12)) in the fine-scale is

Gj(ω) =
d∑
i=1

Fi(ω)H{i,j}(ω), (6.13)

where H{i,j}(ω) is the frequency spectrum of convolution filter. The spectrum H{i,j}(ω)

is typically non-uniform (Xu et al., 2014) and hence maps/extracts frequency features in

a particular way (e.g., in Fig. 6.4(a), the filter extracts wanted features while suppressing

unwanted features). Now we consider the case of using the same operation of Eq. (6.13)

for lower scales (i.e., Eq. (6.10)). This results in

G′D
j
(ω) =

d∑
i=1

Fi(ω)↓D.H
{i,j}(ω), (6.14)

Note that the spectrum H{i,j}(ω) now maps/extracts frequency features in a different

way as compared to Eq. (6.13) (due to expanded input spectrum). Resultantly, it can

map to non-matching features in lower scales (e.g., see Fig. 6.4(b) where the wanted

features get suppressed). Next, we consider the proposed transformation (Eq. (6.11)):

GD
j(ω) =

d∑
i=1

Fi(ω)↓D↑D.H
{i,j}(ω). (6.15)

Note that we do not consider the overall decimation of Eq. (6.11) as it is not present after

each convolution stage (but only once at the network-output). In Eq. (6.15), frequency

features of input coincide with that of the fine-scale input in frequency domain (due to

inverse-scaling or ↑ D). Resultantly, the spectrum H{i,j}(ω) maps/extracts frequency

features in the same way as compared to Eq. (6.13), and hence map to matching features

(except at those high-frequency features lost due to anti-aliasing) as warranted by scale-

space network. This is illustrated in Fig. 6.4 (compare Figs. (b) and (c)).

Remark 2 establishes that our transformation in lower-scales maps to matching fea-

tures for convolution stages. We next show that this transformation is favourable in

other network-stages as well, which ensures its applicability for lower-scales.

115



Generalization of Remark 2: The non-linearities, such as bias, leaky ReLU, etc., opti-

mized for fine-scale is applicable to lower scales under the input-feature transformation

of Eq. (6.11) (i.e., interpolating the decimated input).

Justification: The non-linear transformations such as bias, leaky ReLU, etc., are point-

wise operations and these functions are continuous (in particular, bias is a constant

point-wise offset and leaky ReLU is continuous though not differentiable at origin).

Further, as input images have predominantly low-frequency components, which is sup-

ported by the natural image priors such as total variation (Perrone and Favaro, 2014), l0

in image-gradients (Xu et al., 2013), dark-channel (Pan et al., 2016), etc., input features

to these non-linearities are predominantly low-pass. Therefore, the point-wise values of

decimated (by D) and then interpolated (by D) version will have closer intensity values

as that of the fine-scale image (as shown in Fig. 6.4(b)). Hence, due to closer point-wise

values and continuous characteristic of non-linear functions, the response of the non-

linearities to decimated-and-then-interpolated input must be closer to the corresponding

response of the fine-scale input. Finally, under the assumption that anti-aliasing and

anti-imaging filters are ideal, intermediate stages of decimation (in encoder) and inter-

polation (in decoder) map to matching features as that of fine-scale network. Therefore,

with the proposed transformation of Eq. (6.11), fine-scale network in lower scales map

to matching features as that of fine-scale (as required in a scale-space network).

We next experimentally validate our proposed transformation. First, we evaluate

the state-of-the-art DL deburring network (Zhou et al., 2019) for different image-scales

over its dataset (in Fig. 6.4(b)). It is clear from the plot that the performance drastically

reduces with lower scales (validating ineffectiveness of Eq. (6.10)). Next we introduce

our transformation (Eq. (6.11)) to the same network and repeat the same experiment. It

is evident from Fig. 6.4(b) that, though a simple modification, our proposed approach

significantly improves the performance over different scales. Also note that the PSNR

curves in the latter case is decaying quite slowly as compared to the former; this decay

can be attributed to our assumption of ideal anti-aliasing and anti-imaging filter, i.e.,

a network trained only for the fine-scale need not optimize the filters to perform ideal

anti-aliasing and anti-imaging in decimation and interpolation stages. To this end, we

train our network in a scale-space approach by employing the fine-scale network with

the transformation for lower scales with tied network-weights (see Sec. 6.6.1), and opti-

mize deblurring performances averaged over all image-scales (Eq. (6.19)-(6.20)). This
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training strategy demands the fine-scale network to realize effective anti-aliasing and

anti-imaging through trainable filters, in order to improve the performances in lower

scales as well. Figure 6.4(b) plots the performance of our network for different image-

scales for the same dataset, which reveals a significant improvement in performance

drop over lower scales and hence, the importance of our training strategy.

6.4 Image-dependent, Space-variant Deblurring

In this section, we focus on yet another issue that stems from directly employing the

network-modules of the state-of-the-art DL deblurring method (Zhou et al., 2019) for

coherent-fusion (Sec. 6.2.1) and adaptive scale-space (Sec. 6.3.1). An effective dynamic-

scene deblurring network requires mapping that varies with spatial locations (with vary-

ing receptive fields), and that adaptively varies with different blurred images (Zhang

et al., 2018; Purohit, 2020). For instance, consider a scenario of static camera, and

two dynamic objects at different depths moving with the same velocity. Here, the static

background exhibits no motion blur, whereas the nearer object exhibits more blur than

the farther one (due to parallax (Zhou et al., 2019)). Therefore, an effective deblurring

network warrants an identity mapping for the background and non-identity mapping for

the dynamic objects, but with a relatively larger receptive fields for the nearer object.

Also, positions of those dynamic objects can vary for different images, and hence the

mappings need to be image-dependent. However, the DL deblurring network of (Zhou

et al., 2019) does not admit such a space-variant image-dependent (SvId) mapping.

One key component that leads to the performance improvement in the state-of-the-

art DL deblurring network (Zhou et al., 2019) is the context module (used as feature

mapping in the DL network in Fig. 6.1), which is a slightly modified version of atrous

spatial pyramid pooling (ASPP) (Chen et al., 2017). This improvement is because the

ASPP offers a good trade-off between accurate localization (small receptive field) and

context assimilation (large receptive field). Note that ASPP has also been adopted for

a broader set of tasks, such as semantic segmentation, object detection, visual question

answering, and optical flow; however it does not support SvId mapping. Owing to the

presence of both small and large receptive fields in ASPP, we extend the ASPP module

to instil the SvId mapping in our deblurring network.
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First we briefly discuss about the ASPP module (Chen et al., 2017). As shown in

Fig. 6.5(a), ASPP probes an input with filters at multiple sampling rates and different

fields-of-views. This is efficiently implemented using multiple parallel atrous convolu-

tional layers with different sampling rates. As in today’s convolutional neural networks,

atrous convolutional layer also employs spatially small convolution kernels (typically

3× 3) in order to keep both computation and number of parameters contained. But the

difference in atrous convolution layer is that its filter is associated with a rate r ≥ 1,

which introduces r − 1 zeros between consecutive filter values, thereby effectively en-

larging the kernel size of a k × k filter to (k − 1)(r − 1) × (k − 1)(r − 1) without

increasing the number of parameters or the amount of computation. Mathematically,

the mapping of an input x in an ASPP module is given as

y = x ∗ (ke1 + ke2 + · · ·+ kep); k(m,n) = ke1 + ke2 + · · ·+ kep, (6.16)

where kei is the filter at ith branch with sampling rates ei such that e1 = 1 and

ep > · · · > e2 > e1, and k(m,n) is the resultant filter at spatial coordinate (m,n).

Clearly, even though the individual filters kei possess diverse receptive fields, there ex-

ists only one resultant filter realization in Eq. (6.16) (i.e., k(m,n)) and hence a single

receptive field (as that of the filter kep). Also, the filter realization is identical in all spa-

tial coordinates and is irrespective of input. Therefore, the ASPP module (Chen et al.,
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2017) cannot admit an SvId mapping, which is desirable for motion deblurring.

Next we propose a simple but effective modification to ASPP to enable the SvId

property. As shown in Fig. 6.5(b), we introduce in each parallel branch of ASPP a

space-variant, input-dependent bilinear mask, which modifies the mapping in Eq. (6.16)

as

y = (x ∗ k′e1)�We1 + (x ∗ k′e2)�We2 + · · ·+ (x ∗ k′ep)�Wep (6.17)

where k′ei is the filter at ith branch and Wei, 1 ≤ i ≤ p are non-negative SvId masks

which sum to unity (0 �Wei � 1 and
∑p

i=1 Wei(m,n) = 1). The masks are produced

by a mask-generating network similar to the one employed for view-aggregation (Zhou

et al., 2019; Gong et al., 2018; Chen et al., 2018) with slight modifications to allow for

more than two masks, as discussed in Sec. 6.6. Taking into consideration some desired

properties for dynamic scene deblurring, we slightly modify the SvId as follows. First,

inverse filters for deblurring may require a very large receptive fields (Zhang et al.,

2018; Purohit, 2020), for which we cascade multiple stages (exactly three) of the given

module. Second, as discussed previously, deblurring may also require unity receptive

field for identity mapping, for which we consider the identity mapping as the first branch

of each stage (instead of 3× 3 filter in ASPP).

Remark 3: The modified ASPP admits space-variant, image-dependent (SvId) map-

ping with diverse receptive fields wherein each receptive field (other than 1, i.e., the

trivial identity mapping) admits numerous filter realizations or mappings.

Justification: The resultant filter in Eq. (6.17) can be represented as

k′(m,n) = We1(m,n) · k′e1 + We2(m,n) · k′e2 + · · ·+ Wep(m,n) · k′ep (6.18)

As the masks Wei(m,n), 1 ≤ i ≤ p (in Eq. (6.17)), that linearly combine filter basis

k′ei, can vary with spatial-coordinates (m,n), our modified ASPP can produce different

filters at different spatial locations. Further, as those masks are function of input blurred

image (via mask-generating network), the modified ASPP becomes image-dependent

as well, and hence admits SvId mapping. Denoting the receptive field of a filter k′

as R(k′), the receptive field for the modified ASPP at a coordinate (m,n) becomes

maxR(k′ei) if ∀j > i,Wej(m,n) = 0, and hence the image-dependent masks diversi-
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fies the receptive field (Fig. 6.5(b)-bottom). Further, a resultant filter with receptive field

R(k′ei) can be realized by numerous linear combination of filters k′ej : j ≤ i, specifi-

cally, in Eq. (6.18) filters obtained by all possible combinations for Wek(m,n) : k < i

with Wei(m,n) > 0 and Wek(m,n) = 0 : k > i. Also, note that even though the

individual filter-basis (kei) is sparse, this linear combination of multiple filter-basis can

produce dense filter for a given receptive field. Finally, a cascade of M such modules

for deblurring retains the SvID property, and further increases the receptive field to

{
∑M

i=1R(k′(i))} −M + 1, where k′(i) is the effective filter (Eq. (6.18)) at the ith stage

(because R(k1 ∗ k2) = R(k1) +R(k2)− 1 (Oppenheim and Schafer, 2014)).

6.5 Analysis and Discussions

6.5.1 Sensitivity to Image-noise and Resolution-ratio

To analyse the performance dependence due to image noise, we introduce independent

additive white Gaussian noise (0 ≤ σ ≤ 5 pixels) to blurry images in the two views.

Figs. 6.6(a-b) respectively plot the mean PSNRs and SSIMs of left-right view deblurred

images for different noise levels. Note that over the entire standard-deviation range the

mean PSNRs for deblurred image is over 29 dB, and difference between the PSNRs is

within 0.7 dB. This clearly reveals the noise-robustness of our method, which can be

primarily attributed to the process of noise-addition during training.

We next analyse the performance of our network for different resolution-ratios. We

have considered resolution-ratios from 1:1 to 1:2.75, which span a wide range of today’s

unconstrained DL-smartphones. The PSNRs and SSIMs of left-right view deblurred

images for different resolution-ratios are plotted in Figs. 6.6(c-d). Note that resolution-

ratios and focal length ratios are synonymous, and therefore the findings of this analysis

holds good for diverse focal length ratios as well. It is evident from the figure that

though our network is only trained for 1:2 case (where both the metrics in Fig. 6.6

have a maxima), the performance degradation is quite less over the other resolution-

ratios, and further, the view-consistency is well-preserved over the entire range. This

reveals the generalization capability of the coherent fusion module in channelling rich

complementary information for deblurring for diverse resolution and focal length ratios.
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Figure 6.6: Analysis: (a-b) Performance dependence with respect to image noise. (c-d) Effect
of resolution-ratio on deblurring performance.

6.5.2 Ablation Studies

To study the effectiveness of the three proposed modules, we replace them with anal-

ogous existing modules and retrain using the same strategy. Table 6.1 reveals that our

method performs best when all our modules are present. To analyse the effect of coher-

ent fusion module, we considered only the view aggregation network at node {C,D} in

Fig. 6.1 (as employed in constrained DL-BMD network (Zhou et al., 2019)). For this

case, note that the deblurring performances (in terms of PSNR and SSIM in Table 6.1)

of left- and right-views deviate by a large margin, and hence fails to preserve view-

inconsistency. This implies that information fusion seldom happens without coherent

fusion module, and in this case network tries to primarily improve the right-view PSNR

(which is easy to accomplish due to its rich features), but neglects the left-view (where

PSNR improvement is difficult to achieve due to more degradation). To study the ef-

fect of adaptive scale-space, we considered only our fine-scale network (as in (Zhou

et al., 2019)) for unconstrained DL configuration as well. Note in table 6.1 that the

mean absolute error (MAE) for disparity for different unconstrained cases are greater

than one pixel which reveals the inadequacy of single-scale network in preserving the

epipolar geometry in the deblurred image-pair. Also, note that our multi-scale network
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Table 6.1: Quantitative evaluations: SA - Scale adaptive; CF - Coherent fusion; BS- Bootstrap.
(First/Second)

Method Xu et
al. Xu
and Jia
(2012)

Mohan
et al.
Mohan
et al.
(2019)

Tao et
al. Tao
et al.
(2018)

Kupyn
et al.
Kupyn
et al.
(2018)

Zhang
et al.
Zhang
et al.
(2019)

Zhou
et al.
Zhou
et al.
(2019)

Ours Ours
(BS)

Ours
W/o SA

Ours
W/o CF

Ours
W/o
SvID

Unconstrained DL Case 2: Exposure 4:3

MAE 1.929 2.273 1.9704 1.923 2.0488 1.9328 0.8465 0.8533 1.9718 0.8572 0.8318

PSNR 16.167 25.169 26.536 26.743 26.406 26.437 30.581 30.560 30.118 27.11 28.32

PS:Offset 0.8390 1.0600 6.4970 5.7810 5.6060 5.6360 0.8450 5.1810 0.8971 5.2181 0.8677

SSIM 0.471 0.816 0.860 0.862 0.858 0.863 0.917 0.913 0.915 0.894 0.899

SS:Offset 0.0630 0.0130 0.0860 0.0720 0.0730 0.0740 0.0070 0.0350 0.0081 0.0581 0.0083

Unconstrained DL Case 3: Exposure 3:5

MAE 1.894 3.021 2.2524 2.2204 2.3518 2.2444 1.0043 1.0066 2.2731 1.0076 1.0068

PSNR 17.465 26.348 26.593 26.536 26.431 26.040 28.801 28.724 28.402 26.181 27.65

PS:Offset 1.1230 1.9870 4.1550 4.1280 3.2460 3.3640 1.0050 4.1380 1.1139 3.254 1.0178

SSIM 0.559 0.876 0.862 0.858 0.858 0.868 0.904 0.901 0.898 0.885 0.891

SS:Offset 0.0790 0.0140 0.0570 0.0590 0.0470 0.0440 0.0090 0.0310 0.0131 0.0413 0.0454

Unconstrained DL Dataset 7: Exposure 1:1

MAE 0.941 1.215 0.8869 0.8794 0.9921 0.8672 0.7380 0.7718 0.7802 0.7591 0.7328

PSNR 17.047 26.815 26.984 26.906 25.854 29.198 32.052 31.006 31.047 29.187 28.180

PS:Offset 1.4260 1.8090 1.2520 1.3060 1.2960 3.9320 0.2580 2.3430 0.2577 3.897 0.357

SSIM 0.477 0.854 0.861 0.855 0.828 0.892 0.905 0.904 0.905 0.889 0.857

SS:Offset 0.0940 0.0300 0.0330 0.0310 0.0330 0.0480 0.0070 0.0350 0.0065 0.0493 0.0073

Time (S) 2160 1630 0.507 0.39 0.5237 0.31 0.34/scale 0.34/scale 0.34/scale 0.33/scale 0.31/scale

Size (M) - - 8.06 5.09 21.69 4.83 5.98 5.98 5.98 5.90 5.93

performs quite well for unconstrained DL set-up, and our single-scale network is ade-

quate for constrained DL configuration. Finally, we analyse our SvId ASPP module for

deblurring by replacing it with analogous ASPP module (Chen et al., 2017), i.e., three

cascaded stages of ASPP but without SvId mapping. It is evident from Table 6.1 that our

SvId ASPP module significantly boost the deblurring performance as compared to the

standard ASPP, which highlights the importance of SvId mapping in motion deblurring.

6.5.3 View-consistency Analysis

Subjective Evaluation of View-consistency: To quantify view-consistency in DL de-

blurring, we consider the metric (Chen et al., 2013) which quantify binocular rivalry,

i.e., a perceptual effect that occurs when the two eyes view mismatched images at the

same retinal location(s). It describes the quality of stereoscopic images that have been
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Figure 6.7: Analysis: (a) Subjective evaluation using “Full-reference quality assessment of
stereo-pairs accounting for rivalry (SAR)” Chen et al. (2013). (b) DL super-
resolution Wang et al. (2019b) is performed on different deblurred results. Clearly,
the performance significanly drop for view-inconsistent inputs.

afflicted by possibly asymmetric distortions, where a higher score is attained for good

DL-images, with the highest score unity. Figure 6.7(a) compares this metric for mature

deblurring methods on the unconstrained DL blur dataset (Sec. 6.6), which yet again

proves the effectiveness of our proposed method for stereoscopic-vision applications.

View-consistency for Extended DL application: Motion deblurring is an important

preprocessing step in many computer vision applications that are not designed to work

well in the presence of motion blur. Here, we employ various deblurring methods as

a preprocessing stage for the state-of-the-art DL super-resolution method (Wang et al.,

2019b). In Fig. 6.7(b), we quantify the performance of (Wang et al., 2019b) for var-

ious deblurred results. (As super-resolved ground truth is not available, we use the

super-resolved DL clean images as the reference for all the methods). Notably, there

is a significant performance drop in competing deblurring methods. In particular, our

method outperforms the second-best approach by an average PSNR of 4 dB. Figure 6.8

provides super-resolved left-right patches for visualization. This performance drop is

possibly because the super-resolution work (Wang et al., 2019b) is designed for view-

consistent inputs as is in most DL-based works (Jeon et al., 2018; Chen et al., 2018;

Gong et al., 2018) (but their codes are not available); however, as evaluated previously,

the competing deblurring methods fails to produce view-consistent inputs.

View-inconsistency via Bootstrapping: There exist DL applications that are not meant

for stereoscopic vision (e.g., monocular-based), and in this case, instead of balancing

the deblurring performance in the two-views for view-consistency, what is desirable is

maximum deblurring performance in individual views. But due to training with the
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(a) Kupyn et al. (b) Tao et al. (c) Zhang et al. (d) Zhou et al. (e) Ours

Figure 6.8: Qualitative Results: Applicability of different deblurring methods for DL super-
resolution (Wang et al., 2019b). As compared to the competing deblurring methods,
our method is able to produce the desired view-consistent super-resolution results.

self-supervision costs LRR + LLR in the coherent fusion module, our method seldom

raises the performance in one-view unconditionally while ignoring the other-view. So

as to enable our network to allow those kind of applications, we propose a bootstrap-

ping approach where our trained network is fine-tuned without the self-supervision cost.

Since we are starting with a good identical-performance in the two-views, there exists a

superior view-aggregation (Zhou et al., 2019) provided by the already improved highly-

degraded input image. This allows unconditionally improving the deblurred image with

more image features, while maintaining the superior performance of the other. Table 6.1

and Fig. 6.11) provides our bootstrapped results as well, which clearly reveals that our

approach outperforms all other methods in this aspect too.

6.5.4 Inadequacy of DL Prior for depth-consistency

Remark 1:Dual-lens prior in (Mohan et al., 2019) is not applicable for scene-consistent

dynamic-scene motion deblurring.

Justification: First, we summarize the working of DL-prior. According to Claim 1 in

(Mohan et al., 2019), there exist multiple valid solutions of MDF-pairs (that quantify

camera-motion) for image-pair in the left-right views, wherein some solutions produce

scene-inconsistent disparities and others produce scene-consistent disparities. Assum-

ing the motion blur is due to only camera motion, the DL prior in (Mohan et al., 2019)

promotes a valid MDF-pair, but which can only resolve the deblurred image upto an

unknown pose-variation of the actual scene (which is denoted by Rn).

To aid a fair comparison, we allow the following relaxations in (Mohan et al., 2019):

(a) Despite (Mohan et al., 2019) restricts to only 3D rotation-changes due to only
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Scene-consistent orientations of three segments

R1 R2 R3

Om Nama Sivaya

R1 R2 R3

Undesired orientations favoured by the DL-prior

Figure 6.9: Effect of DL-prior of (Mohan et al., 2019) on dynamic scenes: Due to possibly
different relative-motions in individual dynamic objects, the pose-ambiguity of DL-
prior (Mohan et al., 2019) need not be identical in different objects. The figure
shows the case of different in-plane rotation ambiguity ({R1,R2,R3}) in three
different objects, which clearly derails the scene-consistency as required for most
DL applications.

camera-motion assumption, we assume that (Mohan et al., 2019) handles 3D transla-

tions as well, which is required to model dynamic scenes (Pan et al., 2017; Sellent et al.,

2016). (b) Even though extending (Mohan et al., 2019) for dynamic scene deblurring

is non-trivial, as it involves complex pipeline which include coherently segmenting dy-

namic objects in the two views and stitching different segments with negligible artifacts

in seams (Pan et al., 2017; Sellent et al., 2016; Xu and Jia, 2012), we assume that such

a pipeline exists for (Mohan et al., 2019). The ambiguity due to Rn causes a relative

change in scene-orientation in both the views. Though it does not produce any issues for

the case of static scene (as it renders the entire scene to have an arbitrary pose-change),

this is not the case for dynamic scenes where each dynamic object can have (relative)

independent motion. Let there be x dynamic objects, then the DL-prior on individual

segments produces n independent pose-ambiguity (say Ri
n, 1 ≤ i ≤ x) as the MDFs in

each segments can be independent and hence unrelated. Resultantly, it renders individ-

ual objects in the scene to have different pose-changes, e.g., as illustrated in Fig. 6.9,

a horizontally moving object, with respect to background, can be rendered moving di-

agonally due to an in-plane rotational ambiguity (as considered in Fig. (2) of (Mohan

et al., 2019)), which clearly distorts the scene-consistent disparities.
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Figure 6.10: Network Architecture: Our fine-scale network consists of a three-stage en-
coder/decoder, with SvId for feature mapping and coherent fusion module to bal-
ance signals in the two-views. The same network is shared for both views.

6.6 Experiments

In this Section, we provide more details of our network (Fig. 6.10) and dataset, and

demonstrate our method’s effectiveness in diverse unconstrained DL settings.

Network Details: We consider the standard DL-deblurring encoder and decoder archi-

tectures of (Zhou et al., 2019), i.e., three stages each for encoder and decoder where

each stage consists of 3 × 3 convolution layer and three Resblocks. We employ the

disparity estimation network of (Zhou et al., 2019). We do note that since our method

requires only disparity-maps (unlike (Zhou et al., 2019) which warrants in addition

network-specific disparity-features), any disparity estimation methods, whether conven-

tional or deep learning based, can be employed. Our SvId ASPP consists of three stages,

where receptive field of filter-kernels at individual stages is selected as {1, 3, 5, 7},

{1, 4, 6, 8}, and {1, 2, 3, 4}. To control possible intensity variations between the left-

and right-view images, we normalize the mean and standard deviation of left-view in-

put of the coherent fusion module to that of its right-view input. To create bilinear

masks for coherent fusion and SvId filter module, we consider a light-weight network

as similar to (Zhou et al., 2019); the difference from (Zhou et al., 2019) is that, as our

method requires multiple output masks for the filter-module, we additionally consider

three Resblocks (instead of one) at the middle and soft-max layer at the end (instead of

sigmoid) to normalize multiple masks.

For training our deblurring network, apart from the self-supervision costs of co-

herent fusion module (Eq. (6.5)), we consider two supervision costs to measure the
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Table 6.2: Data distribution

Type Case 1
(1:3)

Case 2
(4:3)

Case 3
(3:5)

Case 4
(3:1)

Case5
(3:4)

Case 6
(5:3)

Case 7
(1:1)

Total
DL-

images
Training 4,159 4,403 4,600 4,159 4,403 4,600 17,319 43,643
Testing 837 803 805 837 803 805 3,318 8,208

difference between the deblurred images ({F̂L, F̂R}) and sharp images ({FL,FR}) for

the left-right views. The first one is an objective cost based on the standard MSE loss:

Lmse =
1

S

S∑
l=1

1

2CMN

∑
k∈{L,R}

‖F̂k
l − Fk

l ‖2, (6.19)

where S is the number of scale-space network-levels, Fl denotes images at level l, and

C,M , andN are dimensions of image. The second cost is the perceptual loss employed

in (Zhou et al., 2019), which is the l2-norm between conv3-3 layer VGG-19 (Simonyan

and Zisserman, 2015) features of deblurred images and sharp images:

Lvgg =
1

S

S∑
l=1

1

2CvMvNv

∑
k∈{L,R}

‖Φvgg(F̂
k
l )− Φvgg(F

k
l )‖2, (6.20)

where Φvgg is the required VGG mapping, and Cv, Mv, and Nv are dimensions of VGG

features. Denoting the normalized coherent fusion cost in Eq. (6.5) as Lcf , our overall

loss function is empirically selected as 0.4Lcf + 0.5Lmse + 0.1Lvgg.

Dataset Generation: Since unconstrained dynamic scene blur has not been hitherto ad-

dressed, we created a dataset with diverse exposure (like the constrained case in (Zhou

et al., 2019)). We follow a similar procedure as that of (Zhou et al., 2019) in cre-

ating DL blur dataset, which we briefly summarize (to highlight our differences). As

typically followed in single-lens dynamic scene blur generation (Nah et al., 2017), a

blurry image is generated by averaging a sharp high frame rate sequence to approxi-

mate a long exposure. The dataset in (Zhou et al., 2019) consists of a wide variety of

scenarios, both indoor and outdoor, which include diverse illumination, weather, and

motion patterns. To increase the video frame rate, it employs a fast and high-quality

frame interpolation method (Niklaus et al., 2017) and generate different blur-sizes by:

(a) considering equal number of synchronized set of DL image-pairs in both left- and

right-views (i.e., identical and fully-overlapping exposures) (b) ground truth frame is
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temporally centered on the exposure time. The major difference of our data generation

is regarding the points (a) and (b). For point (a), following (Mohan et al., 2019), we

do not consider synchronization between DL image-pairs, but allow a random non-zero

exposure-intersection (as shown in Fig. 6.1(a)). Further we allow different number of

DL image-pairs in the two-views in the ratio 1 : 1, 1 : 3, 3 : 1, 3 : 4, 4 : 3, 3 : 5, and

5 : 3 (totalling seven exposure-cases). For all cases, following (Mohan et al., 2019),

exposure-overlap is randomly sampled from 10-100% with standard resolution 1:2. Ta-

ble 6.2 provides the distribution of data samples. For point (b), we consider the ground

truth frame to be temporally centered on the intersection of the left-right view exposure

times to ensure ground truth is view-consistent (unlike the case of (Zhou et al., 2019),

as illustrated in Fig. 6.1(a)).

Comparisons: We consider all standard DL BMD methods, i.e., (Zhou et al., 2019)

that handle unconstrained DL for static scenes and (Mohan et al., 2019; Xu and Jia,

2012) that handle constrained DL for dynamic scenes. We also include state-of-the-

art single-lens methods to represent scale-space approach (Tao et al., 2018), generative

models (Kupyn et al., 2018), and patch-based approach (Zhang et al., 2019). We also

considered for evaluation constrained DL dataset of (Zhou et al., 2019) and uncon-

strained DL static-scene dataset of (Mohan et al., 2019). For quantitative evaluation,

we consider the metrics mean absolute error (MAE) for disparity, and for deblurring,

PSNR and SSIM in the view with relatively more degradation and respective offsets in

the other view. For qualitative evaluation, we provide images with left-right patches.

Evaluations: Our method can seamlessly address unconstrained DL dynamic scene de-

blurring under diverse exposures, exposure-overlap, and resolution-ratio; unconstrained

static scene deblurring as in (Mohan et al., 2019), and constrained DL deblurring as in

(Zhou et al., 2019) (where the last two are special cases of the first problem). Ta-

ble 6.1 provides the quantitative evaluation of deblurring performance for different

unconstrained DL settings. Scene-consistent disparities in unconstrained DL deblur-

ring can be judged by MAE (lower values are better). From Table 6.1, it is evident

that the competing methods produce a large discrepancy (e.g., MAE above two pixels

in the exposure-case 3:5). Further, a higher PSNR with a small offset implies good

view-consistent deblurring. It is clear from the table as well as qualitative examples

(in Fig. 6.11) that our method exhibits good performance. Averaging over all the seven

cases, our method has a PSNR of 30.653 dB with an offset 0.706, whereas the next-best
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1(a) Input 1(b) Xu et al. 1(c) Mohan et al.

1(d) Tao et al. 1(e) Kupyn et al. 1(f) Zhang et al.

1(g) Zhou et al. 1(h) Ours 1(i) Ours bootstrapped

2(a) Input 2(b) Xu et al. 2(c) Mohan et al.

2(d) Tao et al. 2(e) Kupyn et al. 2(f) Zhang et al.

2(g) Zhou et al. 2(h) Ours 2(i) Ours bootstrapped

Figure 6.11: Comparisons for unconstrained DL exposure-cases 3:5 and 4:3. Our method is
able to produce view-consistent results as compared to the competing methods.
After bootstrapping in (i), our method produces good view-inconsistent result as
well (see patches from both views).

129



1(a) Input 1(b) Xu et al. 1(c) Mohan et al.

1(d) Tao et al. 1(e) Kupyn et al. 1(f) Zhang et al.

1(g) Zhou et al. 1(h) Ours 1(i) Ours bootstrapped

2(a) Input 2(b) Xu et al. 2(c) Mohan et al.

2(d) Tao et al. 2(e) Kupyn et al. 2(f) Zhang et al.

2(g) Zhou et al. 2(h) Ours 2(i) Ours bootstrapped

Figure 6.12: Comparisons for unconstrained DL exposure-cases 5:3 and 3:4. Note that, as com-
pared to the competing methods, our method produces superior deblurring results
with good view-consistency.
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1(a) Input 1(b) Xu et al. 1(c) Mohan et al.

1(d) Tao et al. 1(e) Kupyn et al. 1(f) Zhang et al.

1(g) Zhou et al. 1(h) Ours 1(i) Ours bootstrapped

2(a) Input 2(b) Xu et al. 2(c) Mohan et al.

2(d) Tao et al. 2(e) Kupyn et al. 2(f) Zhang et al.

2(g) Zhou et al. 2(h) Ours 2(i) Ours bootstrapped

Figure 6.13: Comparisons for constrained DL dynamic blur case (from Zhou et al. (2019)) and
unconstrained DL static scene case (from Mohan et al. (2019)). Our method is
comparable with respect to the state-of-the-art methods.
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competitor, i.e., (Zhou et al., 2019) has only 27.718 dB with an offset 6.074. Fig-

ures 6.11–6.12 provides extensive evaluation on all comparison methods. It is evident

from the results that existing methods are not adequate for unconstrained DL dynamic

scene deblurring, which calls for a new approach (like ours). We also evaluate our

method on unconstrained DL static scene blur examples (from (Mohan et al., 2019))

and constrained DL blur examples (from (Zhou et al., 2019)) in Fig. 6.13. In all the

cases, our method proves superior over all the competitive methods.

6.6.1 Implementation Details

Our method is implemented using Pytorch 1.1.0 in a server with Intel Xeon pro-

cessor and an Nvidia RTX 2080 TI GPU. For training our model, we use Adam opti-

mizer with β1 = 0.9 and β2 = 0.999, and set the batch-size as four. Following (Zhou

et al., 2019; Tao et al., 2018), we consider 256×256 patches for training, and to aid gen-

eralization we perform random chromatic transformation (brightness, contrast and sat-

uration sampled uniformly from [0.15,0.85]) and Gaussian noise-addition (σ = 0.01).

The decimation step-size in our adaptive scale-space approach is selected as 1√
2

(fol-

lowing traditional scale-space deblurring methods (Mohan et al., 2019; Whyte et al.,

2012)). The learning rate is decayed from 0.001 with a power of 0.3, and convergence

is observed for our network within 4,00,000 iterations.

Since each network-level in a scale-space method adds to the computational cost,

an optimal scale-space approach for our problem has to adaptively select the number

of levels according to the input, e.g., a constrained case does not require decimation,

whereas decimation scales for unconstrained case can be optimized in accordance with

the maximum extent of disparity error (i.e., ∆xR in Eq. (6.7)). Note that a priori knowl-

edge of DL exposure setting (or pivot-separation t′−t′′ in Fig. 6.3(a)) is not sufficient to

decide on the optimal decimation factor because the disparity error depends on the rela-

tive motion undergone in this interval. To this end, we optimize the computational cost

for training and testing as follows. As noted earlier, exposure-overlap for each training-

sample is randomly sampled from 10-100%. Therefore, we first classify our dataset

according to the optimal number of network levels each training-sample requires. For

this, we find the registration error between the left- and right-view input images (follow-

ing (Su et al., 2017)). The ninety-quartile of the vertical displacement error (in pixels) is
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considered as the estimate of discrepancy, which is selected empirically so as to provide

a good data-classification accuracy. We do not consider horizontal displacement error

because it can be primarily due to stereo parallax. Then an optimal decimation scale is

chosen such that it reduces the maximum discrepancy of those training samples within

one pixel. For training, we confine all images in a batch to have a particular number

of network levels, thereby allotting optimal multi-scale network for each batch (which

is derived from the single-scale network following Sec. 6.3.2). The same procedure is

employed to estimate optimal scales during testing. For multi-scale case, weights in

each scale are shared (Sec. 6.3.2), and hence are updated together.

6.7 Conclusions

In this chapter, we proposed the first dynamic scene deblurring method for present-day

unconstrained DL cameras. We identified and addressed its three major issues, namely,

ensuring view-consistency using a coherent fusion module, preserving the epipolar con-

straint using an adaptive scale-space approach, and space-variant image-dependent na-

ture of dynamic scene blur using an advanced ASPP filter module. We also built a new

dataset for the current problem. Comprehensive evaluations with the existing DL and

state-of-the-art monocular techniques clearly reveal the necessity of our method. Our

proposed modules can be easily adapted to future deep learning methods that have to

handle unconstrained DL cameras.
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CHAPTER 7

Conclusions

In this thesis, we explored the problem of blind motion deblurring (BMD) in rolling

shutter cameras, light field cameras and unconstrained dual-lens cameras. Specifically,

we undertook a principled study to develop convenient, appropriate motion blur model

for each imaging modality, and proposed effective algorithms with modest computa-

tional considerations and processing requirements.

First we addressed the BMD problem in rolling shutter (RS) cameras. Here, an RS

motion blur model is developed which resembles a block-wise conventional camera blur

model. We showed that the mature deblurring methods of conventional cameras cannot,

in any straightforward manner, be extended for RS deblurring. This is because of an

important ill-posedness present in RS-BMD which distorts scene-structures. To tackle

this, we next proposed an effective prior which is convex and can be easily incorporated

in the BMD cost. We also demonstrated how the computationally efficient filter flow

can be extended to RS-BMD problem to achieve a significant speed-up. Extensive eval-

uations were conducted to validate the ability of our proposal in dealing with narrow-

and wide-angle RS settings as well as arbitrary camera motions.

Next we turned our attention to the BMD problem in light field (LF) cameras. Ex-

isting LF-BMD methods have to optimize for clean LF ‘in toto’, which brings in se-

vere computational constraints such as requirement of GPU and inability to deal with

full-resolution LFs. We showed that it is possible to isolate motion blur in individual

subaperture images, and relate different blurred subaperture images to a single cam-

era motion. This model allowed estimating camera motion from a single subaperture

image, as opposed to the full LF. Once the camera motion is estimated, we devised

a strategy to independently deblur the remaining subaperture images (in parallel) by

an efficient non-blind deblurring technique, thereby greatly reducing the computational

cost for LF-BMD. We experimentally showed that our method performs full-resolution

LF-BMD without GPU-requirement, and leads to significant computational gain.

Our subsequent endeavour was to study the deblurring problem in unconstrained



dual-lens (DL) cameras that have became increasingly commonplace in present-day

smartphones. A deblurring method for this problem has to ensure scene-consistent

depth-cues in deblurred images. We first introduced a motion blur model for uncon-

strained DL that also explicitly accounts for arbitrary center-of-rotation. Next, we re-

vealed an inherent ill-posed in DL-BMD which easily disrupts scene-consistent dispar-

ities. We addressed this issue using an effective prior on camera motion. Based on

our model and prior, we built an alternating minimization framework to recover center-

of-rotation, camera motion and deblurred image-pairs. We demonstrated the practical

utility of our proposed method using both synthetic and real examples.

Finally, we addressed the problem of dynamic scene deblurring in unconstrained

DL cameras. Due to the large number of unknowns and associated complexity involved

in tackling this problem via traditional methods, we resorted to a deep learning solution

backed by signal processing principles. We showed that the existing DL-BMD methods

fail to produce a view-consistent image-pair for today’s unconstrained DL cameras.

To this end, we brought out the main reason for this limitation and addressed it using a

coherent fusion module. Further, to ensure scene-consistent disparities in unconstrained

DL dynamic scene deblurring, we proposed an adaptive scale-space approach. Also, we

addressed the space-variant image-dependent nature of blur by extending the widely-

applicable ASPP module. An extensive evaluation of our algorithm demonstrated the

potential of the proposed method for unconstrained DL deblurring.

7.1 Some directions for future work

Our rolling shutter motion blur model with its computational capability (Chapter 3)

has extra potential to be tapped. An active research area in conventional camera BMD

is in formulating effective natural image priors, which typically are highly non-linear

and non-convex (e.g., (Pan et al., 2016; Xu et al., 2013)). For optimization with these

priors, BMD methods have to efficiently create blur matrix (X in Eq. (3.15), Sec. 3.5.2)

numerous times, for which they primarily rely on efficient filter flow (EFF). But there

exists no EFF scheme for RS, apart from what we proposed in Sec. 3.4.1. Therefore,

our RS-EFF can be extended to incorporate these priors developed for conventional

cameras in ubiquitous rolling shutter cameras as well.
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Present-day light field cameras are not amenable to wide field-of-view (FOV) con-

figuration due to various practical design constraints. Nevertheless, wide-FOV 4D light

field can be synthesized by merging multiple narrow-FOV LFs; but this is challenging

as it warrants a motion transformation criterion that is consistent with the light field

principles and scene-geometry. Though we have derived a motion transformation in

Eq. (4.11), it is limited to rotation-only motion (which is satisfactory for motion deblur-

ring (Sec. 4.6.1), but not necessarily holds good for LF merging (Szeliski and Shum,

1997)). One way forward is to extend Eq. (4.11) considering general 6D motion to ar-

rive at a general motion transformation for LFs. Yet another research topic that can be

derived from this chapter is dynamic scene LF deblurring, which has not been attempted

hitherto. A major challenge would then be to segment multiple dynamic segments from

a blurred LF, in order to individually assign them independent relative camera motions.

One way forward is to use LF depth information as well (as compared to confining only

to photometry information) to segment dynamic objects at different depth. Once it is

addressed, our divide and conquer approach can be effectively utilized for individual

dynamic segments, which paves the way for LF dynamic scene deblurring.

The recent growing popularity of unconstrained DL cameras, especially in today’s

smart phones, calls for several problems to be addressed. For instant, rolling shutter

effects are pertinent problems in well-lit scenarios, but they have not been addressed

for unconstrained DL cameras. They also require a ‘homography-like’ warping (such

as Eq. (5.9)), admit the same ill-posedness, and hence necessitate an analogous prior.

An exciting pursuit of research would be to extend the ideas in Chapter 5 for tackling RS

effects in DL cameras, including RS deblurring, RS super-resolution, and RS change

detection. Further for deep learning, the DL motion blur model in Eqs. (5.2)-(5.9) can

potentially aid in generating training datasets.

Finally, there exists several deep learning based augmented/virtual reality applica-

tions using DL cameras, e.g., super-resolution (Wang et al., 2019b; Jeon et al., 2018)

and style-transfer (Chen et al., 2018; Gong et al., 2018); but these methods are designed

for constrained DL set-up. Directly using this methods in unconstrained DL configu-

rations naturally leads to view-inconsistency. Our coherent fusion module in Chap-

ter 6 can potentially extend these deep learning methods to tackle view-inconsistency

in those methods. In addition, the adaptive scale-space approach, though a simple tech-

nique, can potentially allow existing deep-learning based deblurring works in accom-
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modating lower image-scales (e.g., extending the state-of-the-art DL deblurring work

(Zhou et al., 2019) as in Fig. 6.7(a)). Further, the atrous spatial pyramid pooling (ASPP)

(Chen et al., 2017) is widely applicable in semantic segmentation, object detection, vi-

sual question answering, and optical flow. We have extended the ASPP (Chen et al.,

2017) to instil the space-variant image-dependent (SvId) property primarily to address

motion blur. But one can evidently see SvId nature in other ASPP-based applications

as well, e.g., in semantic segmentation, spatial positions and scales of an object in an

image can freely vary, and these attributes are image-dependent. Therefore, an excit-

ing research direction is to explore the potential of SvId-ASPP for those applications.

Finally, many of the ideas developed here can be extended for dynamic scene deblur-

ring for rolling shutter and light field cameras using deep learning (which has not been

explored hitherto).

As the trend of consumer cameras going beyond conventional cameras continues,

the methodologies developed in this thesis will be invaluable for motion deblurring.

Afterword:

there’s a bluebird in my heart that

wants to get out;

but I’m too clever, I only let him out,

at night sometimes

when everybody’s asleep.

I say, I know that you’re there,

so don’t be sad.

then I put him back,

but he’s singing a little in there,

I haven’t quite let him die

and we sleep together like that

with our secret pact

and it’s nice enough to make a man weep,

but I don’t weep,

do you?

(From “Bluebird” — Charles Bukowski)
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