Deep Decoupling of Defocus and Motion Blur for Dynamic Segmentation Abhijith Punnappurath, Yogesh Balaji, Mahesh Mohan, A. N. Rajagopalan Indian Institute of Technology Madras www.ee.iitm.ac.in/~ee10d038/d3m ## ECCV'16 ON COMPUTER VISION #### Goal Segment dynamic objects given a single space-variantly blurred image of a 3D scene captured using a hand-held camera #### Challenges Single image Camera/ object motion ⇒ motion blur 3D scene \Rightarrow defocus blur General camera motion/ 3D scene ⇒ space-varying blur Depth-motion ambiguity Static camera Dynamic object Only object pixels blurred Moving camera Dynamic object Only background pixels blurred Moving camera Dynamic/ stationary objects All pixels blurred #### Our approach Train a CNN to predict the composite kernel h_c at each pixel Composite kernel is convolution of defocus h_d and motion h_m kernels Use defocus cue to recover the depth map Use motion kernels to segregate the dynamic objects at each depth layer Joint model for defocus and motion helps resolve depth-motion ambiguity #### Kernel classification using CNN #### Scene segmentation Layer with maximum area in depth map = Reference depth layer d_0 #### Segmenting moving objects in the reference depth layer d_0 Blur on dynamic object pixel ≠ Blur on pixel affected only by camera motion Non-uniform camera motion blur model for a static fronto-parallel planar scene $$g = \sum_{k=1}^{|T|} \omega_0(k) f_k$$ g: blurred image, f: latent image, T: discrete camera pose space, ω_0 : camera motion parameter, f_k : f warped by the homography $\mathbf{H_k}(t_{x_k}, t_{y_k}, \theta_{z_k})$ $$h(i,j;m,n) = \sum_{k=1}^{|T|} \omega_0(k) \times \delta(m - (i_k - i), n - (j_k - j))$$ (1) h: space-varying motion kernel, (i,j): image pixel coordinates, (i_k, j_k) : transformed coordinates when $\mathbf{H_k}^{-1}$ is applied on (i, j) #### Blur compatibility test [2] - Select two pixels with motion kernels h_{m_1} and h_{m_2} - Find $\tau_{\upsilon} = \{k : h_{m_{\upsilon}}(i, j; i_k i, j_k j) > 0\}$, where $\upsilon = 1, 2$ - Calculate $au_{12} = au_1 \cap au_2$ - Regenerate \hat{h}_{m_1} and \hat{h}_{m_2} using τ_{12} - The two pixels are NOT "blur compatible" if h_{m_1} and h_{m_2} have positive entries at locations other than those in \hat{h}_{m_1} and \hat{h}_{m_2} #### Segmenting moving objects at other depths d_p Depth map and motion experienced by reference layer are known \Rightarrow Kernel at a pixel lying on any other depth layer can be determined • Compute relative depth $s_p = \frac{d_p}{d_0}$ from $\frac{\sigma_0}{\sigma_p} = \frac{\left(\frac{1}{u} - \frac{1}{d_0}\right)}{\left(\frac{1}{u} - \frac{1}{d_0}\right)}$ where u = aperture radius • Estimate ω_0 using the method in [2] • Calculate $\mathbf{H}_{k_p}(t_{X_{k_p}}, t_{y_{k_p}}, \theta_{Z_k})$, where $t_{X_{k_p}} = \frac{t_{X_k}}{s_p}$, $t_{y_{k_p}} = \frac{t_{y_k}}{s_p}$ • The motion kernel \hat{h}_{m_p} at any other depth d_p can be estimated from equation (1) with (i_k, j_k) replaced by (i_{k_p}, j_{k_p}) , where (i_{k_p}, j_{k_p}) is obtained by applying $\mathbf{H}_{k_p}^{-1}$ on (i, j) • Let h_{m_p} = motion kernel predicted by our CNN. Cross-correlation(\hat{h}_{m_p}, h_{m_p}) < threshold \Rightarrow dynamic pixel # Results GT [1] [2] D^3M #### References [1] A. Chakrabarti, T. Zickler, W. T. Freeman, "Analyzing spatially-varying blur," In Proc. CVPR 2010. [2] C. Paramanand, A. N. Rajagopalan, "Motion blur for motion segmentation," In Proc. ICIP 2013.