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Abstract

A vast majority of contemporary cameras employ rolling

shutter (RS) mechanism to capture images. Due to the se-

quential mechanism, images acquired with a moving cam-

era are subjected to rolling shutter effect which manifests as

geometric distortions. In this work, we consider the specific

scenario of a fast moving camera wherein the rolling shut-

ter distortions not only are predominant but also become

depth-dependent which in turn results in intra-frame occlu-

sions. To this end, we develop a first-of-its-kind pipeline to

recover the latent image of a 3D scene from a set of such

RS distorted images. The proposed approach sequentially

recovers both the camera motion and scene structure while

accounting for RS and occlusion effects. Subsequently, we

perform depth and occlusion-aware rectification of RS im-

ages to yield the desired latent image. Our experiments on

synthetic and real image sequences reveal that the proposed

approach achieves state-of-the-art results.

1. Introduction

The world of consumer photography is experiencing a

proliferation of low-budget commercial cameras, which are

generally built upon CMOS sensors. Most CMOS cameras

employ a rolling shutter (RS) mechanism in which the pix-

els on the sensor plane are exposed in a row-wise manner

from top to bottom with a constant inter-row delay. Because

of this, images and videos captured using a moving RS cam-

era are often affected by image distortions which are a hin-

drance to scene understanding. Often, even a small camera

motion causes visible geometric distortions in the captured

image, since the camera motion experienced by each row

can be different from other rows, leading to the so-called

rolling shutter effect [15, 31, 30, 29] which is increasingly

becoming a common nuisance factor in photography.

Geometric distortions that stem from RS effects violate

the properties of the perspective camera model. Removing

these distortions from the captured images (also called as

RS rectification) will not only create a pleasing visualiza-

tion, but will also allow us to use the rectified images for

applications such as geometric analysis [17] by employing

algorithms that are designed to work with images obtained

from global shutter cameras.

Several works have attempted problem of RS rectifi-

cation but under different assumptions. The works in

[25, 10, 39] try to remove RS distortions assuming trans-

lational motion of the camera. While [9] uses a zooming

and translational motion model, [8] employs an affine mo-

tion model. An affine RS rectification model for videos shot

by cameras attached to moving vehicles is proposed in [3].

While [15] uses a homography mixture model, [13, 31] as-

sumes pure rotational motion of the camera. Works also

exist [30, 29] that have proposed single image RS rectifica-

tion. While [30] attempts to exploit the presence of straight

lines in urban scenes, [29] uses features learned through a

deep neural network to perform RS rectification.

It must be noted that, none of these works are designed

to handle depth-dependent RS distortions induced by 3D

scenes. However, there exist works which have attempted

to address related problems assuming depth-dependent RS

distortions. Examples relevant to our scenario include

stereo [32], sparse and dense 3D reconstruction [22, 33] and

absolute pose estimation [2, 27] using RS images. However,

most of these works assume the availability of camera mo-

tion from GPS/INS readings and are not aimed at addressing

the problem of image rectification in 3D scenes.

In this paper, we attempt to solve the challenging prob-

lem of latent image restoration (i.e., RS rectification) from

a set of RS frames, which are affected by depth-dependent

geometric distortions as well as occlusion effects. The prob-

lem of interest is very ill-posed, since many inter-dependent

components such as the camera motion causing the distor-

tions and scene geometry are also unknown. To break the

underlying inter-dependencies among these unknowns, we

solve for each unknowns in a sequential manner, while en-

suring that the individual sub-problems are robust enough

to handle the associated dependencies. Following the lit-

erature in multi-view stereo and multi-image restoration

schemes, we adopt a layered model to represent the un-

derlying 3D scene, wherein we express the 3D scene as a

combination of a number of scene planes.
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The work that comes close to ours is [45], where a mod-

ified differential SfM algorithm to estimate relative pose

from two consecutive RS frames was proposed. It was also

the first attempt of its kind to propose a depth-aware rectifi-

cation method that is based on full 3D reconstruction. How-

ever, they rely on strong assumptions of small camera mo-

tion involving constant acceleration motion and also ignore

occlusion effects. In contrast, we specifically address the

case of a fast moving camera involving significant occlu-

sion effects in the captured images while not assuming any

strong constraints on the nature of underlying camera mo-

tion. While SfM algorithms can deliver dense depth maps,

the recovered depth map will be erroneous in cluttered en-

vironments. Therefore, use of such estimates for RS recti-

fication can lead to visually unpleasing artifacts and local

deformations implying that a direct use of RS SfM meth-

ods for RS rectification is not the best choice. Whereas, by

making use of the piece-wise planar structure of scenes we

are able to handle occlusion effects as well as scene clutter

to deliver accurate rectification results.

An example illustrating our approach for RS rectification

of a two-layer scene is shown in Fig. 1. The input to our

algorithm is a set of images captured using a continuously

moving RS camera. As is evident from Fig. 1, the vertical

post standing close to the camera appears to be more slanted

as compared to the background (BG) layer because of the

depth-dependent RS effect. To rectify the input image, we

not only need to infer the scene geometry, but also must

combine pixel intensities from multiple input images to fill

in the holes that get generated due to the intra-frame occlu-

sion effects (a property exhibited solely by RS cameras). As

revealed in Fig. 1, our approach consists of occlusion robust

optimization frameworks to sequentially recover the scene

structure and occluded layer intensities followed by the fi-

nal recovery of the desired latent image. Our proposed ap-

proach also delivers useful by-products such as camera mo-

tion, BG layer intensities, and the scene depth-map. Con-

ventional methods on occlusion-aware image stitching [44],

multi-image based occlusion removal [43, 11, 19] etc. re-

lies on GS image formation models, and can leads to failure

in the presence of RS distortions. The by-products from our

approach can be used as the inputs to these methods thereby

extending their scope to RS images as well.

Our main contributions are summarized below.

• This is the first attempt to formally address the problem

of recovering the latent image of a 3D scene given a set of

observations that are affected by RS distortions and occlu-

sion effects arising from camera motion.

• We advocate a layered image formation model to explain

the depth-dependent RS distortions and occlusion effects

associated with 3D scenes, and propose an occlusion-aware

rectification approach based on this model to recover the

underlying latent image.

Input RS images

Occlusion robust 
RS aware depth 

recovery

Recovered background layer

Depth and 
occlusion aware 
RS rectification

Recovered depth map of inputs 

Recovering occluded regions

Rectified image

Figure 1. Our approach for occlusion-robust RS-aware scene in-

ference and occlusion-aware RS image rectification.

• Our proposed approach achieves state-of-the-art restora-

tion results, and also delivers potential by-products which

can be beneficial for other applications.

2. Image formation model

In this section, we begin with an RS image formation

model for the case of planar scenes.

2.1. Rolling shutter imaging for planar scenes

Due to the sequential acquisition in an RS camera, each

row in the image gets exposed to the scene during a slightly

different interval of time. Therefore, in the presence of cam-

era motion, the camera pose seen by different rows will be

different. Consider a sequence of ν number of RS distorted

images Ri|νi=1 of a planar scene captured under continu-

ous camera motion, where each image has Nr rows and

Nc columns. If there was no camera motion during the ex-

posure time, then the captured image would have been an

undistorted image (i.e., the latent image) F of the scene.

Fig. 2 illustrates the acquisition model for images captured

using a moving RS camera. As we discussed earlier, if the

camera is undergoing motion, camera poses experienced by

different rows in Ri will not be the same. Let p denote

the set of 6D camera poses representing the camera motion

during the capture of all input images. The camera pose

corresponding to each row of Ri will have an associated

element in p. The pose vector p can be viewed as the con-

catenation of ν smaller pose vectors each corresponding to

the individual RS frames. We denote the small pose vector

corresponding to Ri as pi.

Since image acquisition is done in a continuous fashion,

to associate the actual camera motion with the rows in an

image, we also need to consider the camera motion during

the time delay tb (aka inter-frame time delay) between any

two successive frames. To account for the camera motion

during tb, we define nb number of blank rows [31] and treat

the motion associated with an entire RS frame as a vector
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Figure 2. Acquisition model for multiple images captured using an

RS camera under continuous camera motion.

of length Nr + nb (as revealed in Fig. 2). Thus, p contains

the discretized camera poses for a total of ν(Nr+nb) rows.

We can now express the jth row of Ri in terms of the

camera poses in p as [13, 30]

Ri
j = {H(pi

j) ◦ F}j (1)

where pi
j is the jth pose vector in pi, H(pi

j) is the homog-

raphy corresponding to pi
j , and ◦ refers to the geometric

warping operation. The above equation can be read as fol-

lows: jth row of the RS image Ri can be obtained by taking

the jth row of an image obtained by warping the latent im-

age F using the homography H(pi
j). We can relate H(pi

j)

to pi
j as follows [16]

H(pi
j) = Kq

(
Θ

i
j +

1

d
Ti
jnt

)
K−1

q (2)

where Kq is the camera intrinsic matrix formed of the focal

length q, Θi
j is the rotation matrix (built from 3D rotation

components in pi
j), Ti

j is a column-vector representing the

3D translational motion of the camera corresponding to pi
j ,

t denotes the transpose operation, and n and d refers to the

normal and distance of the scene plane.

From Eqs. 1,2, a sparse matrix Wi
r can be created to

relate the images Ri and F in a matrix-vector multiplication

form as follows [35].

ri = Wi
rf (3)

where ri, f are the lexicographically arranged column vector

forms of Ri and F . Wi
r is a warping matrix which embeds

the pixel motion between Ri and F . Next, we will extend

these formulations for the case of layered 3D scenes.

2.2. Rolling shutter imaging for layered 3D scenes

Following the works in [20, 21, 36, 37], we adopt a mul-

tilayer model to represent the underlying 3D scene. Let us

assume that the scene of our interest comprise L layers, in-

dexed by l ∈ {0, .., L− 1}, where l = 0 represents the BG

layer. All the layers follow a depth ordering constraint of

the form dl > dl+1, where dl refers to the distance of scene

plane corresponding to lth layer. Using multilayer model,

the latent reference image f can be expressed as [20]

f =

L−1∑

l=0

( L−1∏

m=l+1

(1−αm)

)
⊙αl ⊙ fl (4)

where
∏

and ⊙ refers to element-wise multiplication oper-

ation, αl is an alpha blending mask with value 1 over the

spatial support region corresponding to lth layer and 0 oth-

erwise, and fl is the intensity image corresponding to lth

layer. Note that, in the captured image, pixels from all the

layers need not be fully visible since the foreground lay-

ers can occlude the layers behind them. In Eq. 4, while

αl denotes the entire mask corresponding to lth layer, the

portions of lth layer that are visible in the reference image

is actually determined by

(
L−1∏

m=l+1

(1−αm)

)
⊙αl, which

accounts for the occlusion effects from other layers too.

Assuming that the appearance and shape of each layer is

constant ([4, 12, 42, 1]), the latent image corresponding to

a new view point ϑ of the camera can be expressed as

g =

L−1∑

l=0

( L−1∏

m=l+1

(1− Wϑ,mαm)

)
⊙ Wϑ,l(αl ⊙ fl) (5)

where Wϑ,l is the warping matrix which embeds the per

pixel motion of lth layer between f and g. Eq. 5 can be

treated as the image formation model of a GS camera.

Now, consider the case of a set of images ri|νi=1 captured

by a moving RS camera. We can relate ri in terms of the

latent layer specific intensity (fl) and mask (αl) images as

ri =

L−1∑

l=0

( L−1∏

m=l+1

(1− Wi
r,mαm)

)
⊙ Wi

r,l(αl ⊙ fl) (6)

where Wi
r,l is the warping matrix which embeds the RS dis-

tortions associated with the lth layer in ri. Wi
r,l can be con-

structed using a set of homographies Hl(p
i
j)|

Nr

j=1 which rep-

resents the row-wise varying camera motion involved in the

formation of ri. Hl(p
i
j) which can be expressed as a func-

tion of pi
j and the scene plane parameters (normal vector nl

and depth value dl) as

Hl(p
i
j) = Kq

(
Θ

i
j +

1

dl
Ti
jnt

l

)
K−1

q (7)

Since foreground (FG) layers can occlude the layers behind

them, only a part of each layer will be visible in a captured

RS frame ri. Apart from Eq. 6, we can model such occlu-

sion effects in terms of occluded layer mask α̃i
r,l as follows.

ri =

L−1∑

l=0

α̃
i
r,l ⊙ Wi

r,lfl (8)

where

α̃
i
r,l = Wi

r,lαl ⊙
L−1∏

m=l+1

(1− Wi
r,mαm) (9)
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The elementary difference between Eq. 6 and Eq. 8 is that,

the former uses the same mask to relate a single layer in

all RS frames whereas the latter uses different masks for

different frames. An example with detailed illustration of

different components in our image formation model is pro-

vided in the supplementary material. Now, we will discuss

our proposed approach for RS rectification which is built on

the image formation model discussed thus far.

3. Rolling shutter rectification

Our objective is to recover the latent image f, from a

given set of RS distorted frames ri|νi=1 (where ν denotes

the number of RS distorted frames) captured under continu-

ous camera motion. This problem is heavily ill-posed since

the only known information is the RS distorted frames, and

to arrive at the latent image, we also need to solve for the

camera motion (p) along with layer-specific plane parame-

ters (dl, nl), mask (αl), and intensities (fl). Therefore, we

divide the original problem into a number of sub-problems

and sequentially solve for each unknown.

3.1. Camera motion estimation and depth recovery

Our first task is to recover the camera motion involved

in all the input frames (p), along with the number of depth

layers (L), and the associated plane parameters (dl, nl). We

estimate all the above-mentioned unknowns by making use

of the optical flow correspondences [26] computed across

consecutive frames. Let the point correspondences between

two consecutive frames be x ↔ x′. Let Ψ denote the set of

all point correspondences, Ψl be a subset from the set of all

points correspondences that belongs to lth layer, and Ψo de-

note the set of outlier/erroneous correspondences in the op-

tical flow estimate. In practice, the outlier correspondences

get generated either because of local errors in optical flow

estimate or because of the non-existence of corresponding

points (due to occlusion effects) across the image pair.

We will now seek the camera trajectory p spanning the

whole exposure period of all the input frames, assuming that

sufficient number of layer correspondences can be obtained

from the optical flow. Since the number of unknown poses

in p is too high, we use a key-row interpolation approach

[31] that treats only the camera poses at certain rows (called

as key-rows) as unknowns. We use a total of nk equally

spaced key-rows over the entire camera trajectory, thereby

reducing the number of unknown poses from Z(M + nb)
to nk. The camera pose corresponding to an arbitrary row

is obtained by interpolating the poses corresponding to the

two adjacent key-rows. We apply linear interpolation for

translations and spherical linear interpolation for rotations

[34]. The following form of optimization is used to solve

for the desired camera trajectory p, and plane parameters

(nl, dl) corresponding to all the layers.

arg min
p,nl,dl

ν−1∑

i=1

( L−1∑

l=0

∑

<x,x′>∈Ψl

c(x, x′)

)
+

( ∑

<x,x′>∈Ψ\Ψl

min
(
min

l
c(x, x′), γo

))
(10)

where

c(x, x′) = ||Hl(p
i(x))−1x − Hl(p

i+1(x′))−1x′||2 (11)

where pi(x) is the pose vector from the camera trajectory

pi corresponding to the row index of x, γo is a scalar con-

stant determining the cost for an outlier correspondence,

and c(x, x′) is the cost for a true correspondence. It is

straightforward to see that the contribution from c is min-

imum for a specific camera trajectory which will take each

pair from true correspondences to a common point in the la-

tent reference frame, which is in fact the camera trajectory

which we seek for.

To form the above cost function, we divide the avail-

able correspondences into two mutually exclusive classes,

wherein the class Ψl comprises layer correspondences

which are guaranteed to contain no outliers whereas Ψ\Ψl

contains all doubtful correspondences which can either be a

true correspondence or an outlier. The second term in Eq.

10 is used to assign an outlier robust cost to all doubtful

correspondences. The cost for each pixel in Ψ\Ψl is deter-

mined as the minimum error value incurred by assigning it

to any one of the layers or an outlier. Note that, the second

term in Eq. 10 itself is sufficient enough to estimate the un-

knowns, since it contains the cost associated with both the

true correspondences and outliers. However, the introduc-

tion of the first term allows us to regularize the entire opti-

mization based on the knowledge of true correspondences

ensuring faster convergence.

Optimization details: To begin with, the only known in-

formation to solve Eq. 10 is the set of all point correspon-

dences Ψ (obtained from optical flow). Since the number

of layers is also unknown, we first solve Eq. 10 assum-

ing that there exists only a single layer, and no true layer

correspondences are known. By doing so, the optimization

in Eq. 10 will give the plane parameters corresponding to

the most dominant layer (i.e., the layer with most true cor-

respondences across all input images) and the underlying

camera motion. At the end of this optimization, the corre-

spondences in Ψ with cost lower than γo is classified as the

true correspondences for the dominant layer. Next, we will

find the plane parameters and true correspondences of the

next dominant layer by solving Eq. 10 in a similar fash-

ion, but using the current estimate of camera motion and

the correspondences obtained after removing the true corre-

spondences of the first dominant layer. This process is re-

peated until it is impossible to identify sufficient number of
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true correspondences for a unique layer. This kind of an it-

erative optimization will also help us to identify the number

of layers in the scene. Finally, a joint optimization for all

the unknowns is done by solving Eq. 10, but with the ini-

tial estimates obtained from previous stages. For the final

joint optimization, the true layer correspondences obtained

earlier is used to compute the cost for the first term in Eq.

10 and the remaining correspondences are used for the sec-

ond term. A special case of our motion estimation approach

is when the input images contain no depth-dependent RS

distortions, wherein the algorithm will return the number of

layers as one.

The estimates of p̂, n̂l, d̂l obtained from the joint opti-

mization using Eq. 10 can be directly used to construct the

motion matrices Wi
r,l mentioned in Eq. 6. Also, the depth

values obtained for each plane in the scene can be used to

determine the ordering of the depth layers. Next, we will

discuss our approach for recovering the layer masks based

on the knowledge of motion matrices and layer ordering.

3.2. Occlusion­robust recovery of layer masks

In this section, we will discuss our approach to estimate

the layer masks by making use of the motion matrices ob-

tained from Section 3.1. We will first solve for the occluded

masks α̃i
r,l corresponding to each input image, and are then

combined to form final estimates of full layer masks αl.

3.2.1 Occluded layer mask estimation

We employ a multi-label optimization approach to solve for

the occluded layer masks α̃
i
r,l. Note that α̃i

r,l is defined

with respect to a RS frame ri, and it represents the spatial

support of lth layer that is visible in ri. We assign one label

for each layer in ri and solve for the label assignment for

every pixels in ri using graph cuts [7, 23, 6]. We use the

following form of cost function to express desired proper-

ties of the labeling.

C(βu) = Du(βu) + λs

∑

u′∈Nu

Su,u′(βu, βu′) (12)

where Du(βu) is the data cost to assign the label βu to pixel

u, Nu is a neighborhood of pixels around u, Su,u′(βu, βu′)
is the spatially varying smoothness cost to assign the labels

(βu, βu′ ) to the adjacent pixels (u, u′) and λs is the scalar

weight on the smoothness term.

The smoothness cost Su,u′(βu, βu′) that we employ has

the following form.

Su,u′(βu, βu′) = µu(1− k|βu−βu′ |) (13)

where µu is an edge aware weight defined at pixel u as

µu =

{
0, if |▽ri(u)| > µt

1, otherwise
(14)

where ▽ri(u) is the gradient of the image ri at u and µt

is the threshold used to remove the weak gradients that are

unlikely to be a part of object boundary. Thus the term µu

helps to relax the smoothness constraint along the bound-

aries of different layers in ri.

The data cost that we use for lth layer of ri is given by

ν∑

i1=1

i1 6=i

v(i1, i, l, u)||{Wi
r,l(W

i1
r,l ◦

−1 ri1)− ri}(u)||1 (15)

where ◦−1 refers to the inverse warping operation and

v(i1, i, l, u) is the visibility map defined on the coordinates

of ri. It is straight forward to see that, for layer l, the above

equation assigns the sum of L1 norm between the pixel val-

ues from ri and its neighboring frames. For layer l, the

warping across frames are done by assuming that all the

pixels belongs to layer l. Hence the data cost ensures that

the label assignment obtained by minimizing Eq. 12 respect

the relation in Eq. 8. To avoid errors in data cost that arises

from layer occlusions we use the visibility map v(i1, i, l, u)
[38, 21, 14] defined on the coordinates of ri. In the binary

valued visibility map v(i1, i, l, :), a value of 0 is assigned to

the pixels in the lth layer of ri that get occluded when we

warp them to the coordinates of ri1 . Formally, v(i1, i, l, u)
can be computed as

v(i1, i, l, u) =

L−1∏

m=l+1

(1−ϕ(i1, i,m, l, u)) (16)

where

ϕ(i1, i,m, l, :) = Wi
r,lW

i1
r,l◦

−1Wi1
r,mWi

r,m◦−1
α̃

i
r,m (17)

Interestingly, the visibility map estimation requires

α̃
i
r,m, whereas to perform an occlusion-robust estimation

of α̃
i
r,m we need visibility map, thus creating a chicken-

and-egg dependency [14]. To resolve this issue, we will

first introduce an additional label (say o) while solving Eq.

12. The label o (typically assigned with a constant value

for all pixels) corresponds to the pixels in ri for which the

labeling cannot be done with high confidence. We will then

iteratively solve Eq. 12 and Eq. 16 to find the optimal so-

lution. To solve this alternating estimation effectively, we

follow an approach similar to [21]. We progressively freeze

the high-confidence label assignments (by assigning their

data cost for other labels high) and apply graph cut only on

the remaining pixels.1 The iterative refinement using Eq.

12 and 16 is continued by raising the label cost for o in each

step, until there are no pixels in ri that get assigned to o. By

performing such an iterative refinement of label assignment,

we can arrive at the desired solution for the binary valued

occluded layer mask α̃
i
r,l.

1Refer supplementary for more details.
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3.2.2 Recovering fractional occluded layer mask

In practice, regions around the boundaries of different lay-

ers contain a mixture of intensities from both layers result-

ing in a gradual variation in intensity from one layer to an-

other rather than an abrupt transition. This effect becomes

more prevalent when the images are captured using a mov-

ing camera, since camera motion can induce motion blur.

To accurately model such effects one need to use masks

with fractional values along the object boundaries. Hence,

to obtain a refined estimate of the occluded layer mask,

we solve a regularized form of closed-form matting [24] to

yield a fractional layer mask. Note that unlike the way we

have defined in the image formation model (Eq. 4), the layer

masks will no longer be binary valued and it can have frac-

tional values between 0 and 1. To avoid confusions, we use

α̃
i
r,l and ˜̺ir,l to denote the binary and fractional occluded

layer mask, respectively.

For the estimation of ˜̺ir,l, we first generate a trimap [24]

based on the estimate of α̃
i
r,l obtained from Eq. 12. We

apply dilation and erosion on α̃
i
r,l to form the uncertain re-

gion (i.e., the region in trimap with values between 0 and 1)

and replace the values at uncertain regions in α̃
i
r,l with 0.5

to form the trimap ̺
′. The final estimate of fractional oc-

cluded layer mask ˜̺ir,l is obtained by solving the following

form of regularized optimization problem.

argmin
̺

̺
T (L + λ1A)̺+ λ2(̺− ̺

′)T C(̺− ̺
′) (18)

where L is the matting Laplacian matrix [24] derived from

ri. C is a diagonal matrix whose diagonal elements are zero

for all pixels from uncertain regions and one otherwise. The

constraint (scaled by a high valued weighting parameter λ2)

enforced through C is used to ensure that the regions for

which the labels are known are classified as it is in the final

matte estimate. The diagonal matrix A (scaled by λ1) is

used to regularize the matte estimation problem based on

the prior knowledge about the BG layer intensities.

Since there exists significant translational camera motion

across input images, portions of the occluded regions in one

input image will be visible in neighboring frames. This al-

lows us to estimate the true BG layer intensity values over

the uncertain regions in trimap, despite of the presence of

boundary errors in current estimate of α̃i
r,l. We exploit this

possibility to borrow the visible sure BG pixels from other

images to yield the BG layer intensity value ξ(u) at u in ri.2

The diagonal entries of A (in Eq. 18) is assigned with a non-

zero value of exp(−λ3||ξ(u)− ri(u)||1) at the uncertain re-

gions, and other locations are assigned to 0. Thus, while

solving the optimization problem in Eq. 18, at places where

the known intensity values in ξ is near to ri, the values of

alpha matte estimate are encouraged to go to 0 through A.

2Refer to supplementary material for more details.

3.3. Estimation of latent layer intensities

Estimation of latent layer intensity fl|
L−1

l=0
is done by pos-

ing it as a linear least-square problem. To do so, we will ex-

press Eq. 8 as a linear relation between the unknowns and

known quantities. In ri, the contribution from lth layer is

given by

˜̺ir,l ⊙ Wi
r,lfl = D˜̺i

r,l
Wi

r,lfl = Bi
r,lfl (19)

where D˜̺i
r,l

is a diagonal matrix formed with diagonal en-

tries being the elements in ˜̺ir,l, and the motion matrix Bi
r,l

embeds both the spatial location and motion of lth layer in

the ith RS distorted frame. Let f̃ =
[

ft0 .. ftL−1

]t
and

Bi =
[
Bi
r,0 .. Bi

r,L−1

]
, where t denotes the matrix trans-

pose operation. Now we can express Eq. 8 in the form of

matrix-vector multiplication as

ri = Bi f̃ (20)

We solve the following optimization problem to obtain

the layer estimate f̃.

argmin
f̃

λf||▽f̃||1 +
∑

i∈Γ

||ri − Bi f̃||2 (21)

where Γ denotes the indexes of input images which we use

for estimating f̂ and λf is a scale factor. In Eq. 21, the sec-

ond term is the data cost which ensures that the estimate of

layer intensities agree with the observed RS images, and the

first term is used to regularize the optimization by enforcing

natural sparsity on image gradients [40].

Latent layer mask estimation and final image restora-

tion: To obtain the latent layer masks αl, the estimates of

˜̺ir,l from different frames are warped to the reference latent

image coordinate and then combined as follows.

αl = max
i∈Γ

Wi
r,l ◦

−1 ˜̺ir,l (22)

From the available estimates of fl|
L−1

l=0
and αl|

L−1

l=0
, we can

directly solve for the latent image using Eq. 4. In Eq. 21,

since we are solving for a single image (for each layer)

which can explain image layers from multiple RS frames,

the resulting estimate will contain information from occlud-

ing regions in the reference RS frame too ensuring that the

recovered latent image will contain no holes.

4. Experiments

In our experiments, the middle frame (among all the

input frames) is usually considered as the reference im-

age. If the input RS image does not contain any depth-

dependent distortions, then we will no longer require the

layered model, and hence our camera motion estimation in

Eq. 10 can be directly followed by the image rectification
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)
Figure 3. Real experiment: RS rectification of a two layer scene. (a) Reference input image, and (b) recovered scene depth. (c) Trimap

used for fractional layer mask recovery, (d) estimated factional layer mask. (e) Recovered latent background layer. Rectified image using

(f) proposed method, (g) [31], (h) [30], (i) [29], and (j) [45].

(a) (b) (c) (d) (e)
Figure 4. Real experiment, 3 layer scene: (a) Reference image input, Rectified image using (b) [15], (c) [29], (d) [45], and (e) proposed

method.

in Eq. 21. We use [41] to obtain the optical flow corre-

spondences, and to solve Eq. 21, we employ alternating

direction method of multipliers (ADMM) algorithm [5, 35].

Next, we show the experimental results of our proposed

algorithm on both synthetic and real image data. For perfor-

mance evaluation we compare our method with the state-of-

the-art RS rectification methods based on multiple images

[31, 15, 45] as well as single image [30, 29].

4.1. Quantitative evaluation

For quantitative evaluation, since there exist no publicly

available datasets with GT information, we have generated

two different kinds of image datasets (using sample images

from [18]) each containing 10 RS image sequences. The

first dataset (S1) contains images with RS distortions in-

volving no depth effects (which simulates the practical sce-

narios involving RS distortions induced by fronto-parallel

planar scenes or camera motions involving pure rotations).

The second dataset (S2) is more relevant to our problem

where the images are affected by depth-dependent RS dis-

tortions as well as occlusions. We perform the quantita-

tive evaluation using two different metrics; 1. PSNR (in

dB) of the rectified image, and 2. average pixel motion

error (APME) which is the root mean squared error be-

tween the GT motion and the estimated motion (measured

in pixel shifts) for all the pixels that are visible in both the

GT image and the reference RS image. While PSNR mea-

sures the accuracy in terms of the pixel intensities, APME

is a measure of the accuracy in camera motion estimation

as well as scene geometry. In Table 1, we list the aver-

age values of PSNR and APME obtained on our synthetic

datasets. As is evident from Table 1, in S1, since there

exist no depth-dependent distortions, the competing multi-

image based methods and our approach perform equally

well, whereas the ill-posedness of single image based meth-

ods lead to severe rectification errors for many examples.

In contrast, for S2, all the competing methods fail in mo-

tion recovery as well as rectification, whereas the proposed

method shows significant improvement.

Table 1. Performance comparison on synthetic datasets S1 and S2

Dataset S1 Dataset S2

Method PSNR APME PSNR APME

[15] 29.56 0.93 24.21 7.29

[31] 29.80 0.71 23.89 6.36

[30] 25.33 3.94 23.10 10.17

[29] 26.17 3.25 23.51 8.64

Ours 30.21 0.51 28.90 0.62

4.2. Real data

Here we show the rectification results of the proposed

method when applied on real image sequences from exist-

ing methods as well as our own dataset. The real examples

in our dataset are from a XIAOMI Mi5 mobile phone cam-

era and captured either with a handshake or from a moving

vehicle. For our real images, we have used the calibration

procedure in [28] to find the number of blank rows (nb).

Due to space constraints, here we provide visual compar-

isons only for a few representative real examples.

Real examples from our dataset for scenes containing

two and three layers are shown in Fig. 3 and Fig. 4, respec-

tively. The scene depth map shown in Fig. 3(b) is formed

by combining the depth values obtained from Eq. 10 and

the occluded layer mask estimate obtained through iterative
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(a) (b) (c) (d) (e)
Figure 5. Real example from [45] with RS distortions induced mainly by camera rotations (i.e., no depth-dependent distortions). This is a

special case of our approach where our rectification algorithm will boil down to that of a single layer model: (a) Reference input image.

Rectified image using (b) [30], (c) [29], (d) [45], and (e) our approach.

graph cut. A trimap (Fig. 3(c)) is generated using the oc-

cluded layer mask to recover the fractional occluded mask

shown in Fig. 3(d). The fractional layer mask is then used to

combine information from multiple images to yield the re-

covered latent background layer in Fig. 3(e). Note that, this

is another potential by-product of our approach, which can

aid applications wherein one would like to remove the oc-

cluding objects from multiple RS affected images. Compar-

ison for the example in Fig. 3 reveals that, the background

dominance leads to a complete failure of existing methods

in recovering the motion as well as latent image, whereas

the proposed approach estimates the motion accurately and

elegantly subsumes information from multiple images to

yield occlusion-aware restoration. A similar observation

can be made from the example in Fig. 4 too. As is evident

from the rectification results in Fig. 3 and Fig. 4, estimation

methods in [15, 31, 30, 29] capture the motion closer to that

of the background layer which leads to partial rectification

of background layers alone. Among the competing meth-

ods, the best rectification performance is achieved by [45],

which is the only work to attempt estimation of depth-aware

motion. The depth estimation and rectification in [45] de-

pends on the optical flow estimates obtained at every pixel.

In the real examples of Figs. 3 and 4, significant occlusion

effects and lack of sufficient details result in many outliers

in the optical flow estimates. These errors along with possi-

ble deviation from constant acceleration camera motion as-

sumption leads to partial failure of [45] in terms of the cam-

era motion estimation (as indicated by the slants retained

in each scene planes in Figs. 3(j), 4(d)), although [45] is

the best among the competing methods in capturing motion

from multiple layers. In terms of rectification, at pixel posi-

tions where the algorithm in [45] resulted in serious errors

in pixel correspondences, the rectified image contains visu-

ally unpleasing artifacts/holes (refer to the regions marked

with green color in Fig. 4(d)), and at places of small errors

the rectified image contains undesired local deformations

(refer to the region marked with blue color in Fig. 4(d)).

However, our approach is well-designed to handle outliers

in optical flow estimates ensuring reliable performance even

in cluttered environments. Furthermore, while recovering

the intensity from occluding regions is impossible for [45],

our occlusion-aware restoration fill-in the occluding regions

using information from neighboring frames to achieve sig-

nificant improvement over all the existing methods.

Finally, in Fig. 5, we show a real example from [45],

where RS distortions in input images are induced by dom-

inant camera rotations. For this case the RS distortions are

no longer depth-dependent and can be treated as equiva-

lent to our case for a single layer scene. Unlike the case

of a fast-moving camera, the rotational motion often leads

to curvature distortions in the captured images, wherein the

straight lines in the input images will appear as curved in

the captured images. As is evident from the comparisons,

both our approach as well as [45] is able to rectify the input

images satisfactorily, since both these methods are equally

well designed to handle this scenario. Due to the ill-posed

nature, the single image-based methods in [30, 29] retain

minor visible distortions in their rectification results.

In the supplementary material, we provide additional de-

tails on our theoretical findings and algorithm implemen-

tation, a comprehensive listing of the main steps involved

in our image rectification algorithm, additional quantitative

evaluations, and visual comparisons on both synthetic as

well as real examples.

5. Conclusions

In this paper, we proposed an algorithm to remove RS
distortions from images of a 3D scene with special focus
on the case of image capture using a fast moving camera
where both depth-dependent RS distortions as well as oc-
clusion effects are prevalent. Our proposed approach at-
tempts to sequentially recover the camera motion and scene
structure which is then used to perform an occlusion-aware
RS rectification of RS images. Quantitative and qualitative
experimental results on both synthetic and real RS images
reveal that our approach achieves state-of-the-art results on
RS rectification of 3D scenes. As a by-product, we could
also recover the scene geometry in the presence of RS and
occlusion effects, which is the first attempt of its kind. Po-
tential exists to make use of the by-products from our ap-
proach for applications such as depth-aware image stitch-
ing, multi-image based occlusion removal etc.
Acknowledgements We are grateful to Bingbing Zhuang
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