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Fast Motion-Deblurring of IR Images
Nisha Varghese , Mahesh Mohan M. R. , and A. N. Rajagopalan, Senior Member, IEEE

Abstract—Camera gimbal systems pervade various applications
such as navigation, target tracking, security and surveillance. The
need for higher steering rate (rotation angle per second) of gimbal
often results in motion blur in the captured video frames. Motion
deblurring in real-time is difficult with existing blind restoration
methods which incur large execution times while attempting to
retrieve latent images from blurry inputs using high-dimensional
optimization. On the other hand, deep learning methods for mo-
tion deblurring, though fast, do not generalize satisfactorily with
domain shifts. In this work, we address the problem of real-time
motion deblurring in infrared (IR) images captured by a real
gimbal-based system. We propose two blur-kernel estimation meth-
ods and reveal how a priori knowledge of the blur-kernel can be
used in conjunction with non-blind deblurring methods to achieve
real-time performance. We experimentally show that, in compari-
son to the state-of-the-art techniques in deblurring, our method is
better-suited for practical gimbal-based imaging systems.

Index Terms—Blur-kernel, gimbal based imaging, IR deblurring
dataset, real-time motion deblurring, video surveillance.

I. INTRODUCTION

CAMERA gimbal systems [1] used in navigation, target
tracking, security and surveillance, work by controlling

the trajectory of a camera-mounted on a gimbal in order to
obtain an extended field-of-view (FOV). During exposure, due
to relative motion between scene and the gimbal, the captured
images are typically degraded by motion blur. This can, in turn,
lead to low probability of threat detection and higher false alarm
rate during tracking and surveillance [2]–[4]. Since most of the
applications require blur-free images, motion deblurring is a
very important problem [5].

A number of traditional methods exist for blind motion de-
blurring in which both the blur-kernel and the latent image are
estimated from the blurry input. The problem of deblurring is
an ill-posed one, and sharp image estimation typically neces-
sitates the use of natural image priors [5], [6], [17], [19]. The
methods of [7] and [8] accommodate space-variant blur-kernels
but their high computational cost renders them ineffective for
real-time applications. The method of [9] is fast but is restricted
to mild blur. Gimbal motion is predominantly a 1D rotational
yaw motion and the blur-kernel can be assumed to be space-
invariant [10]. For space-invariant deblurring, we can model the
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blurred imageB as a clean imageL convolved with a blur-kernel
k and corrupted by noise n [5], [15]–[21]:

B = L ∗ k+ n, (1)

where ∗ denotes convolution. There are several works on space-
invariant blind deblurring [15]–[20] for recovering both the blur-
kernel and latent image. State-of-the-art deblurring methods are
designed for an unconstrained system such as random hand-held
motion. Consequently, the number of unknowns and hence the
processing time for these traditional methods is unacceptably
high as they do not leverage the underlying motion model in
gimbal-based systems where camera motion is usually con-
strained or is tractable.

The task of deblurring an image with a known blur-kernel
is known as non-blind deblurring. Numerous non-blind decon-
volution approaches exist, varying greatly in their speed and
sophistication [21]–[27]. Since the problem is only to estimate
clean image L given the blurred image B and the blur-kernel
k, the processing time for non-blind deconvolution is compara-
tively far less than any blind deblurring method.

Another class of methods use deep learning (DL) networks.
As these methods typically require only a single pass over the
network for deblurring, their processing time is comparatively
quite less [2], [30]–[36]. However, DL networks need a realistic
training dataset with a large number of blurred and correspond-
ing deblurred image-pairs or many unpaired sharp and blurred
real-world images [37]. This requirement is often difficult to
meet practically, especially in the case of IR images. Further,
one pertinent problem is regarding generalization, i.e., a network
trained using a particular dataset struggles when confronted with
unseen examples from other datasets even if the domain shifts
are small.

In this work, we deal with IR image deblurring and propose
two effective blur-kernel estimation methods for real-time mo-
tion deblurring of images captured using gimbal-based systems.
In our approach, blur-kernel estimation is followed by non-blind
deblurring for achieving real-time performance. While we have
considered a gimbal set-up which extends the FOV via yaw-
based gimbal motion, our work can be extended to other gimbal
trajectories also. Our main contributions are as follows:
� We provide a mathematical framework to estimate the blur-

kernel in gimbal-based IR imaging systems, and leverage
it to devise an effective non-blind deblurring solution that
is almost real-time.

� We experimentally verify that our method outperforms
competing methods by a significant margin via extensive
evaluations with real gimbal data.

� Our model can be used to create large-scale motion blur
datasets for gimbal-based IR systems that can be harnessed
by deep learning methods.
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II. THE PROPOSED APPROACH

Our central idea is that if we know the blur-kernel for a
blurred video-frame, then we can speed-up deblurring by a large
factor by using that blur-kernel within a non-blind deblurring
framework. Among the many existing non-blind deblurring
methods, we zero-in on three popular methods, namely, Wiener
filter (WF) [28], Richardson-Lucy (RL) deconvolution [22], [23]
and deblurring using hyper-Laplacian priors [24] due to their
attractive execution times. Non-blind deblurring methods yield
good results provided the blur-kernel is accurate [21]–[27]. To-
wards this end, we propose two blur-kernel estimation methods
for the problem on hand.

A. Blur-Kernel Estimation Using Blur-Sharp Pair

The strength of this method lies in the fact that it does
not warrant knowledge of motion or camera parameters. It is
well-known that temporal averaging of a number of consecutive
sharp images, captured from a camera, yields a blurred image
that resembles a motion blurred image. To get sharp images
from the gimbal-system, the camera is panned very slowly with
a lower steering rate, say sr_low deg/sec, so as to obtain blur-free
images of the scene. Blurred images corresponding to different
steering rates can then be obtained by suitably averaging N
(N ∈ {1, 2, 3, . . . , 13}) number of sharp frames from sr_low
deg/sec. The center frame is taken as the sharp image. The
blurred image B along with its sharp image counterpart L
can be used to estimate the blur-kernel k corresponding to the
motion blur content in the blurred image by solving Eq. (2) using
conjugate gradient.

k = argmin
k

||B− L ∗ k||2 s. t.
∑

k = 1 (2)

This method works for any type of blur-kernel (refer to supple-
mentary material (Section S2)). Eq. (2) takes an initial guess for
k and refines it over iterations. A uniform kernel is a reasonable
choice as an initial estimate of k.

The blur-kernels obtained by averaging frames for different
values of N correspond to different steering rates. The value of
N can be found either empirically by matching the deblurred
results for different steering rates or it can be derived if the
exposure time texp of the camera is known. The rotation angle
of a camera with steering rate sr (in deg/sec) and exposure time
texp is given by θsr = texp · sr. A steering rate of sr_low deg/sec
covers 1◦ in 1/(sr_low) sec. If fr is the frame rate (in frames/sec)
then, the number of frames is given by

N =
fr · θsr
sr_low

(3)

B. Analytical Modeling of Blur-Kernel

In the previous section, we showed how the blur-kernel can be
estimated from a blur-sharp pair. In this section, as an alternative
method, we propose to find the blur-kernel mathematically for
the case of gimbal motion that pans a scene with an IR mounted
camera with known intrinsic camera parameters. This analytical
approach does not need any blur-sharp image pairs.

For this purpose, we first assume a maximum pixel spread
s (for each steering rate), from the center of the image, due to
camera motion. We next find the rotation angle of the camera
corresponding to every pixel displacement upto the maximum
pixel displacement s. Then we find the transformation of the
center pixel value using homography equations for every rotation

Fig. 1. Relation between rotation angle and pixel spread.

angle of the camera. We first derive the equation for the rotation
angle corresponding to a pixel spread that occurs in the image
due to yaw-rotation induced motion blur.

1) Rotation Angle θ Corresponding to a Pixel Spread: The
situation on hand is illustrated in Fig. 1. The camera is rotated by
an angle θ where w and h are the dimensions of the image, f is
the focal length of the camera, dm is the maximum displacement
from the center of the image, and r is the distance from the edge
pixel point to camera center.

When the camera rotates by an angle θ, an arc with length rθ
will be formed in the rear of the sensor plane whose image is the
pixel spread on the image plane. Assuming a linear arc length
rθ, we can write the arc length as the projection from the sensor
plane (as seen in Fig. 1(b)). Therefore,

rθ = ps · cosφ (4)

where φ is the angle between the arc and the sensor plane, and ps
is the corresponding pixel spread. From Fig. 1(a), it can be seen
that the angle between the arc and the sensor plane is equal to the
angle between f and r. Therefore cosφ can be written as cosφ =
f/r and r can be written in terms of f anddm as r =

√
f2 + d2m.

Hence from Eq. (4), the rotation angle θ corresponding to the
pixel spread can be written as

θ = ps ·
(

f

f2 + d2m

)
(5)

We next list the steps to find the blur-kernel corresponding
to the pan motion of the camera given the intrinsic and motion
parameters of the camera.

1) The intrinsic camera matrix K =

⎡
⎣f 0 w/2

0 f h/2

0 0 1

⎤
⎦.

If the focal length (f ) of the camera is not known, then it
can be found out using FOV α and the frame dimensions
w and h as

f =

√
h2 + w2

2 tan(α/2)
(6)

2) Find the rotation angles of the camera θ1 and θmax corre-
sponding to one pixel spread and maximum pixel spread
s respectively, using Eq. (5).

3) Since we consider rotation about the y axis, the rotation
matrix R corresponding to the rotation angle θ can be
written as

R = Ry =

⎡
⎣ cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ

⎤
⎦ (7)
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Find the rotation matrices for the rotation angles from
−θmax to + θmax with step size θ1.

4) For pure rotation model, homographyH [7] can be written
as H = KRK−1. Find all the H matrices corresponding
to every rotation obtained in step 3.

5) For the center pixel value x, find its transformed point
x’ = Hx for allH and mark 1 at every x’ if x’ is an integer.
If x’ is not an integer, then distribute 1 to the neighbouring
positions of x’ using bilinear interpolation and normalise
it so that it sums to 1.

6) If we are interested in obtaining blur-kernels correspond-
ing to different positions (other than center) of the image,
repeat step 5 for the other pixel locations.

It is straightforward to extend this to general gimbal-
trajectories.

2) Selection of Maximum Pixel Spread: If the exposure time
texp is known, then the maximum spread s for a steering rate sr
rad/sec can be determined a priori as follows.

The total angle of rotation φ′ during the exposure time can be
written as φ′ = sr · texp. Then by using Eq. (5), we can find the
maximum pixel spread s from the center as

s =

(
φ′

2

)
·
(
f2 + d2m

f

)
(8)

The blur-kernel for each steering rate can be computed in
advance using our proposed methods (Section II-A and II-B) and
can be stored in a Look-Up-Table (LUT). For a given steering
rate of the input video, the corresponding blur-kernel can be
obtained from LUT and can be used in non-blind methods to get
the deblurred output.

III. EXPERIMENTAL RESULTS

In this section, we demonstrate the results of our proposed
blur-kernel estimation i) from blur-sharp pair (Section II-A), and
ii) analytically (Section II-B) followed by standard non-blind
deblurring methods WF [28], RL [22], [23] and [24]. We also
analyse their real-time performance. For comparisons, we con-
sider a recent blind deblurring method [20] and a deep learning
method ESTRNN [35]. We also consider the blur-kernel returned
from [20] and use it for non-blind deblurring.

A. Datasets and Implementation Details

We present results on two datasets (Dataset1 and Dataset2)
with real IR images, captured from an actual gimbal system that
pans a scene at 30 frames/sec. Both the datasets contain videos
of steering rates 1 deg/sec and 10 to 60 deg/sec with a step-size
of 10 deg/sec. Dataset2 contains an extra video of steering rate
0.5 deg/sec. Both of our real video datasets inherently contain
some noise. For higher steering rates, Dataset2 contains videos
which are comparatively more noisy than Dataset1. The intrinsic
parameters of the camera along with the values chosen forN and
s (Section II) for each steering rate for both the datasets are given
in supplementary material (Section S3). Using these parameters,
the blur-kernels are estimated from the proposed methods for
different steering rates, and for both the datasets independently.
The corresponding kernels are stored in an LUT. For a fair
comparison with the DL method, we finetune ESTRNN [35]
on IR images. We denote them as ESTRNN1 and ESTRNN2
(trained on image deblurring dataset consisting of blur-sharp
image pairs formed (see Section II) from Dataset1 and Dataset2,

Fig. 2. The blurred image and deblurred results of blind method [20] and DL
network ESTRNN2 [35] are given in the first row. Comparisons of non-blind
deblurring methods (1. Krishnan et al. [24], 2. RL, 3. WF) for steering rate
of 60 deg/sec using blur-kernels from three different methods (a: from blind
method [20], b: estimated using blur-sharp pair, c: analytical blur-kernel). Note
that our methods (b) and (c) deliver the best performance consistently.

respectively). We perform deblurring with Intel Xeon e5-2630v4
processor @ 2.2 GHz.

B. Qualitative Analysis

We use the following nomenclature for blur-kernels.
a) kblind[20]: Blur-kernel estimated using blind method [20].
b) kBSpair: Blur-kernel as obtained from LUT.
c) kanal: Analytical blur-kernel from LUT.
In Fig. 2, we give comparison results for a real blurred image

from Dataset1 corresponding to steering rate of 60 deg/sec.
The result of blind method [20] is not correct as it outputs 3
squares in a row (see the red zoomed inset on the tower) when
actually there are only 2 squares in a row in that region. Also,
the processing time is about 5 minutes/image which precludes
it for real-time processing. Even though ESTRNN2 [35] takes
only 30 ms/image, its deblurring performance is poor as it was
trained on Dataset2. This underscores a known fact that DL
networks are susceptible to domain-dependence, even between
two different IR datasets. From Fig. 2, it is amply evident that
our methods (b and c) yield best performance consistently across
WF, RL as well as [24]. Only the proposed methods reconstruct
the four small squares in the zoomed portion of the tower
(see red zoomed inset) perfectly. The tip of a branch in the
image is also deblurred to a dot (see the blue zoomed inset)
whereas the competing methods struggle to deblur these small
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TABLE I
QUANTITATIVE EVALUATIONS USING PSNR/SSIM & NIQE/PIQUE/BRISQUE AND PROCESSING TIME FOR NBD (NON-BLIND DEBLURRING) METHODS

Fig. 3. Outputs of our methods ((b): kBSpair+WF and (c): kanal+WF) for
blurred images from 1. Dataset1 (50 deg/sec), 2. Dataset2 (60 deg/sec) and 3.
Dataset2 (50 deg/sec). Note that both our methods perform consistently well.

structures. Our results are better than kblind[20] also. Visually,
motion deblurring quality is best by using kanal with WF. In
Fig. 3, deblurred results for one more real blurred image from
Dataset1 and two real blurred images from Dataset2, using our
proposed methods kBSpair+WF and kanal+WF are given. From
the figure, it can be seen that deblurring quality of our methods
is again quite good. In the first row, the branches and leaves
are sharply visible; in the second row, edges, especially the thin
vertical bars (given in the blue zoomed inset) emerge clearly;
and in the third row, vertical edges of the structure (given in
zoomed insets) have very little smear. Comparison results of
our best method kanal+WF with ESTRNN on more real blurred
images are given in the supplementary material (Section S1).

C. Quantitative Comparisons and Time-Complexity

In order to quantitatively evaluate efficacy, from each dataset,
we generated 20 blurred images (10 images corresponding to
50 deg/sec and 10 images at 60 deg/sec steering rate) by tem-
porally averaging the lowest steering rate images (1 deg/sec for
Dataset1 and 0.5 deg/sec for Dataset2). The center frame from
the temporally averaged sequence was treated as the clean image,

although, strictly speaking, in our captured videos, even the im-
ages corresponding to the lowest steering rate are not noise-free.
These images are then deblurred using blind [20], ESTRNN [35]
as well as non-blind methods (using kblind[20], kBSpair, and
kanal). The average PSNR and SSIM values (higher is better)
for these methods are given in Table I. For both the datasets, our
methods yield significantly higher values.

For deblurring real images, since ground truth is not available,
we use no-reference image quality scores such as naturalness
image quality evaluator (NIQE) [38], perception based image
quality evaluator (PIQUE) [39] and blind/referenceless image
spatial quality evaluator (BRISQUE) [40] (lower is better). The
average scores for each dataset computed over 20 real deblurred
images (10 images each from steering rates of 50 deg/sec and
60 deg/sec) are also given in Table I. It can be observed that
our proposed method (especially kanal) comfortably outper-
forms [20], ESTRNN [35] and kblind[20].

With a known blur-kernel, and by using a single core of the
processor, per image, the processing time of non-blind deblur-
ring methods [24], RL and WF are given in the last column
of Table I. Even with a single core, WF delivers real-time
performance (0.04 sec/frame). For further speed up, with 24 par-
allel workers, the processing time for a real-time blurred video
input (assuming 30 frames/sec) and for real-time visualization of
deblurred results of an already available blurred video (assuming
312 frames) are also given in Table I. WF achieves excellent
real-time performance for both the cases. For the case of 312
frames, both WF and [24] achieve real-time performance.

In summary, blur-kernel estimated using our proposed meth-
ods followed by Wiener deconvolution is optimal both in terms
of deblurring quality and real-time processing requirement.

Additional Remarks: Our work can be leveraged to create
large-scale IR datasets with realistic gimbal motion blur (an
example is given in Section S4 in supplementary material).
Such datasets, which are a rarity, can be a valuable asset for
contemporary deep learning methods.

IV. CONCLUSION

In this work, we dealt with the problem of real-time motion
deblurring in gimbal-based systems. Our studies on real IR
datasets captured from an actual gimbal system revealed that
existing methods fall significantly short of delivering real-time
deblurring performance. We modeled the motion blur-kernel
using a low steering rate dataset as well as analytically with
the knowledge of camera parameters. We used the estimated
kernels in conjunction with non-blind deblurring methods to
deliver excellent performance both in terms of deblurring quality
and real-time processing.
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The figures and tables of this supplementary material are
numbered using a prefix S, and are arranged as follows:

1. Qualitative comparisons of our best method kanal+WF,
with DL method ESTRNN [35], on some more images
from Dataset1 and Dataset2.

2. Validation of algorithm for blur-kernel estimation using
blur-sharp pair for any arbitrary kernel.

3. Camera parameters and the values of N and s (Sec. II)
chosen for each steering rate for both the datasets.

4. An example of a synthesized blurred image.

S1. QUALITATIVE ANALYSIS

A comparison of deblurred results of our method kanal+WF
with ESTRNN [35] on two different images from both
Dataset1 and Dataset2 are given in Fig. S1. It can be seen
that our deblurring quality is distinctly better than ESTRNN
(see the highlighted portions).

1(a) Blurred 1(b) ESTRNN2 [35] 1(c) Ours: kanal+WF

2(a) Blurred 2(b) ESTRNN2 [35] 2(c) Ours: kanal+WF

3(a) Blurred 3(b) ESTRNN1 [35] 3(c) Ours: kanal+WF

4(a) Blurred 4(b) ESTRNN1 [35] 4(c) Ours: kanal+WF

Fig. S1. Comparison of deblurred results of our method kanal+WF (c) with
ESTRNN [35] (b), on two images from both the datasets, Dataset1 (1-2) and
Dataset2 (3-4).

S2. BLUR-KERNEL ESTIMATION USING BLUR-SHARP PAIR

In this section, we revisit the blur-kernel estimation method
used in Sec. II(A) and reveal that our method of blur-kernel
estimation from a blur-sharp pair can be used for even arbitrary
blur-kernels.

(a) Sharp (b) Blurred (c) Estimated kernel (d) Original kernel

Fig. S2. Comparison of estimated kernel (c) (from blur sharp pair (a-b)),
and the original kernel (d). Note that the blur-kernel estimation method using
blur-sharp pair estimates PSFs similar to the ground truth.

Figure S2 gives an example of blur-sharp pair used for
PSF estimation. The blurred image in Fig. S2(b) is formed
synthetically by blurring the sharp image (Fig. S2(a)) with a
diagonal motion blur kernel of size 21 pixels at an angle of
30◦ (Fig. S2(d)). By solving Eq. 2, the estimated blur-kernel
from the blur-sharp pair is given in Fig. S2(c). It can be seen
that the estimated blur kernel is quite close to the original
kernel.

S3. CAMERA PARAMETERS AND VALUES FOR N AND s

As given in Sec. II, values of N (number of frames to be
averaged) and s (maximum pixel spread) can be found out
from camera and dataset parameters. The values thus obtained
are given in Table S1.

TABLE S1
CAMERA/DATASET PARAMETERS AND VALUES OBTAINED FOR N AND s

Steering rate (◦ /sec) 10 20 30 40 50 60

D
at

as
et

1

FOV = 8◦ , texp= 5 ms, sr low= 1◦ /sec N 2 3 5 6 8 9
fr= 30 frames/sec, w = 558, h = 481 s 3 5 7 10 12 14

D
at

as
et

2

FOV = 3.7◦ , texp= 2 ms, sr low= 0.5◦ /sec N 2 3 4 5 6 8
fr= 30 frames/sec, w = 579, h = 461 s 2 4 6 8 10 12

S4. BLURRED IMAGE SYNTHESIS

(a) Synthesized (sharp-blur pair) (b) Real - SR60 deg/sec

Fig. S3. An example of our synthesized blurred image (a) for the steering
rate 60 deg/sec. Note that (a) looks quite similar to real blurred image (b).


