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(a) With inplane rotations (b) Without inplane rotations

Figure S1. Full set of PSFs of Fig. 2(b) illustrating the effect of
inplane rotations for wide-angle setting (29 mm) using [6].

We begin by revisiting the problem motivation. This is
followed by section S2 which contains our proof for claim
2 (section 3). Section S3 gives implementation details, and
section S4 is devoted to additional evaluations.

S1. Problem Motivation (illustrative)
As mentioned in section 1 in the main paper, our method

advances the state-of-the-art in RS deblurring, as it can deal
with wide-angle configuration, unconstrained ego-motion
and unconstrained shutter, without the need for timing in-
formation. Here, we further elaborate the significance of
these problems that we have addressed in our work.
Unconstrained Focal-length: The PSFs provided in
Fig. 2(b), which illustrates the importance of inplane rota-
tions for wide-angle systems, is created using a focal length
of 29 mm and real hand-held trajectory #39 in [6]. The full
set of PSFs is provided in Fig. S1. We give in Fig. S2 focal-
length settings of some popular CMOS imaging devices. It
is clearly evident from the figure that wide-angle configura-
tions are indeed important in photography (and predominant
in cell-phones and drone cameras). However, the state-of-
the-art RS-BMD [11] works only for narrow-angle settings.
Hence, it is important to accommodate wide-angle settings.
Unconstrained Ego-motion: Even though a polynomial
function can reasonably model human camera shake, RS
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Figure S2. Focal lengths of some popular CMOS devices. Note the
wide-angle setting predominant in cell-phone and drone cameras.

blur also exists in images captured by drones, street view
cars, etc., wherein the ego-motion is seldom regular [11].
Fig. S3 illustrates this fact with an under-damped response
of a robotic system (which we employed in Figs. 5(d-f) us-
ing [4]). Also given is the approximation using a fourth or-
der polynomial (as used in state-of-the-art RS-BMD [11]).
From the plot it is clear that the polynomial model is un-
able to adequately capture the motion, thus underscoring
the need for handling unconstrained ego-motion.
RS timing information: Both shutter speed (te) and inter-
row delay (tr) are required a priori in state-of-the-art RS-
BMD [11] to fragment the motion trajectory for each image-
row. Getting tr from a camera requires processing of videos
taken using the same camera setting (section 5.2 in [11]).
Deriving both te and tr without the meta-data and camera
information further escalates the difficulty. In contrast, our
method does not need any a priori timing information. Note
that we estimate the value tr/te for the RS prior in Eq. (9)
solely from image intensities as discussed in section 4.4.

S2. Proof of Claim 2

Claim 2: The prior which restricts drifting of TSFs between
blocks (in Eq. (9)) is a convex function in w, and can be
represented as a norm of matrix vector multiplication, i.e.,
as ‖Gw‖22, with sparse G.
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Figure S3. Vibrational ego-motion of a robotic system (using [4]).
The polynomial model is inadequate to capture these trajectories.

To prove this, we draw from the following well-known
properties of convex function [1] which are a linear function
is always convex (prop. 1), composition of convex functions
is always convex (prop. 2), and non-negative sum of convex
functions is convex (prop. 3).
Proof: Considering nb number of image blocks and each
block-MDF wi having length l, an individual additive com-
ponent in our RS prior (in Eq. (9)) can be represented as
‖Γ (rb(j− i + 1)) ·S(i,j)w‖22, where S(i,j) is a matrix of di-
mension l × nb · l, with all zeros except two scaled identity
matrices of dimension l × l corresponding to ith TSF (with
scale 1) and jth TSF (with scale −1). Therefore, the term
{Γ (rb(j− i + 1)) ·S(i,j)w} is a linear function in w. Since
‖Γ (rb(j− i + 1)) · S(i,j)w‖22 is a composite of squared L2

norm (which is convex) of a linear function in w, each addi-
tive component is convex (props. 1 and 2). Resultantly, the
sum of all additive components in Eq. (9), i.e., prior(w), is
a convex function in w (prop. 3).

Also, prior(w) can be represented as ‖Gw‖22, where
matrix G is obtained by vertically concatenating matrices
{Γ (rb(j− i + 1)) · S(i,j)} corresponding to the individual
additive component in RS prior. Since S(i,j) is a sparse ma-
trix, G will also be sparse. Hence proved. �

S3. Implementation Details

We implemented our algorithm in MATLAB. We empiri-
cally set 7 scales, each with 7 iterations, in our scale-space
framework (section 4). The blurred image in the ith scale
is formed by downscaling the input image by a factor of
(1/
√

2)i−1. To start the alternative minimization, the coars-
est scale MDFs are initialized with Kronecker delta. For
ego-motion estimation (section 4.2), we consistently used
the RS-prior regularization (α in Eq. (13)) in level i as 27−i

(so that the RS prior can cope with the increasing image
size, and thus the data fidelity magnitude ‖Fw − ∇B‖22,
in finer levels). We used the MDF regularization β′ (in
Eq. (13)) as 0.01. For latent image estimation (section 4.3),
we used R = 48 such that each image-patch is square, and
with 6 patches along the shorter dimension and 8 along the
longer dimension. For the Richardson-Lucy deconvolution
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Figure S4. Cumulative time for different processes. Note the com-
putational gains of the prior-less RS-EFF based image estimation.

(employed in the last iteration of the finest level), we used a
total number of 30 iterations. For the selection of block-size
(section 4.4), we used an initial block-size r0 as 145, and a
downscaling factor of 2 (i.e., M0 = M/2 and N0 = N/2).

Running time reported in Table 1 is obtained on the same
system with an Intel Xeon processor with 32 GB memory.
We found that for deblurring an 800 × 800 RGB image
(of maximum blur-length of 30 pixels), our unoptimized
MATLAB implementation took about 9 minutes. Fig. S4
provides a detailed break-up of the time taken for each es-
timation step. In fact, observe that a large fraction of the
total time is utilized for latent image estimation in the fi-
nal iteration which involves a costly image-prior (see sec-
tion 4.3). This underscores the importance of our efficient
prior-less estimation in the initial iterations derived from
RS-EFF (Eq. (14)).

S4. Additional Evaluations
We provide in Fig. S5 iteration-by-iteration results to il-

lustrate how the algorithm works. In Fig. S6, we give full
images corresponding to the patches of synthetic experi-
ment results provided in Figs. 5(a-i). In Figs. S7-S11, we
give additional evaluations for the real RS-BMD examples
provided in Figs. 7 & 8. These include SIV-BMD [2] and
RS rectification followed with SIV-BMD [2] (as reported in
[11]), and state-of-the-art CCD-BMD [9]. We also consider
BMD without our RS prior to illustrate the ego-motion am-
biguity in RS-BMD. For low-light case, we consider [5] that
specifically addresses low-light BMD (albeit for CCD cam-
eras). The codes for [5], [11] and [9] are downloaded from
the author’s website and executed using default parameters.
Additional examples under different lighting condition and
for wide-angle settings are given in Fig. S12.

For sake of completeness; we provide GS deblurring
comparisons with state-of-the-art CCD-BMD methods of
[9, 8, 10, 13, 12] and [3] in Figs. S13 & S14. We eval-
uated on the examples from the dataset of [7] and [9] us-
ing their reported results. The results show that our method
works equally well for CCD cameras and importantly, with-
out warranting any prior knowledge of the shutter.



Scale 3, Iteration 7

Scale 2, Iteration 7
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(a) MDF 1 (w1) (b) MDF 2 (w2) (c) MDF 3 (w3) (d) Latent image (L)

Figure S5. Iteration-by-iteration results of the alternative minimization of block-wise MDFs and latent image: (a-c) Estimated block-wise
MDFs and (d) Estimated latent image. Notice the variation in block-wise MDFs, which depicts the characteristic of RS blur (as shown in
Fig. 3). Also, observe the convergence of the block-wise MDFs through iteration 5 to 7 in the finest image scale (last three rows).



(a) Input (b) Su and Heidrich [11] (c) Ours

Figure S6. Full-sized images corresponding to the image patches given in Figs. 2(a-i): First row gives a case of wide-angle system
(Figs. 2(a-c)), second row gives a case of vibratory motion (Figs. 2(d-f)), and third row gives a case of CCD-blur (Figs. 2(g-i)). (Best
viewed on high-resolution display with zoom-in corresponding to an 800× 800 image size.)



(a) Input (b) Cho and Lee [2] (c) RS rect. + [2]

(d) Xu et al. [13] (e) Pan et al. [9] (f) Su et al. [11]

(g) Ours without RS prior (h) Ours with RS prior (i) Patches of (g) in top, and (h) in bottom

Figure S7. Detailed comparisons for RS narrow-angle example in dataset [11] (Fig. 7-top-row). Note the effect of incoherent combination
due to the block shift-ambiguity (section 3, claim 1) in (i)-first row, which is successfully suppressed by our RS prior ((i)-second row).

(a) Input (b) Cho and Lee [2] (c) RS rect. + [2]

(d) Xu et al. [13] (e) Pan et al. [9] (f) Su et al. [11]

(g) Ours without RS prior (h) Ours with RS prior (i) Patches of (g) in top, and (h) in bottom

Figure S8. Detailed comparisons for RS narrow-angle example in dataset [11] (Fig. 7-second-row). Our method recovers finer details (see
bag-zipper in patch 1), and deblur with negligible ringing artefacts (see bag-badge in patch 2), as compared to competing methods.



(a) Input (b) Xu et al. [13] (c) Pan et al. [9]

(d) Hu et al. [5] (e) Su et al. [11] (f) Ours

Figure S9. Detailed comparisons for RS wide-angle example (Fig. 8-first row). In contrast to competing methods, our method models the
RS ego-motion better (observe the residual blur in the letters, and the repeated occurrence of the longest grass leaf in (c)).

(a) Input (b) Xu et al. [13] (c) Pan et al. [9]

(d) Su et al. [11] (e) Ours without RS prior (f) Ours

Figure S10. Comparisons for RS wide-angle case (Fig. 8-second row). White boxes in images (e) and (f) show the effect of RS prior.

(a) Input (b) Xu et al. [13] (c) Pan et al. [9]

(d) Su et al. [11] (e) Ours without RS prior (f) Ours

Figure S11. Comparisons for RS wide-angle example (Fig. 8-third row). White box in images (e) and (f) shows the effect of RS prior.



(a) Input (b) Su et al. [11] (c) Ours

Figure S12. Additional RS comparisons with state-of-the-art RS-BMD method [11] under different lighting conditions and for wide-angle
settings. Note the inefficacy of the competing method in dealing with wide angle systems.

(a) Input (b) Michaeli et al. [8] (c) Perrone et al. [10]

(d) Xu et al. [13] (e) Pan et al. [9] (f) Ours

Figure S13. Comparisons for CCD blur example in dataset [7]. Our result is comparable with [8, 10, 13] and [9].

(a) Input (b) Gupta et al. [3] (c) Whyte et al. [12]

(d) Xu et al. [13] (e) Pan et al. [9] (f) Ours

Figure S14. Comparisons for CCD blur example in dataset [9]. Our result is comparable with [3, 12, 13] and [9].
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