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Abstract

Most present-day imaging devices are equipped with

CMOS sensors. Motion blur is a common artifact in hand-

held cameras. Because CMOS sensors mostly employ a

rolling shutter (RS), the motion deblurring problem takes

on a new dimension. Although few works have recently ad-

dressed this problem, they suffer from many constraints in-

cluding heavy computational cost, need for precise sensor

information, and inability to deal with wide-angle systems

(which most cell-phone and drone cameras are) and irregu-

lar camera trajectory. In this work, we propose a model for

RS blind motion deblurring that mitigates these issues sig-

nificantly. Comprehensive comparisons with state-of-the-

art methods reveal that our approach not only exhibits sig-

nificant computational gains and unconstrained functional-

ity but also leads to improved deblurring performance.

1. Introduction

CMOS is winning the camera sensor battle as it offers

advantages in terms of extended battery life, lower cost and

higher frame rate, as compared to the conventional CCD

sensor [14]. Nevertheless, the annoying effect of motion

blur that affects CCD cameras prevails in common CMOS

rolling shutter (RS) cameras too (Fig. 1), except that it man-

ifests in a different form [24].

The problem of blind motion deblurring (BMD) – i.e.,

recovery of both the clean image and underlying camera

motion from a single motion blurred image – is an exten-

sively studied topic for CCD cameras. Gupta et al. [4]

proposed a 3D approximation for general 6D camera pose-

space by considering only inplane translations and rota-

tions, while Whyte et al. [27] considered only 3D rotations.

Kohler et al. [12] showed that both these 3D models [27, 4]

are good approximations to general pose-space. To reduce

the ill-posedness of BMD, a recent trend is to introduce

novel priors. Some representative works in this direction

include natural image priors such as L0 sparsity [28], total

variation [18], and dark channel prior [16]; and ego-motion

priors that include Tikhonov regularization [7], and sparsity

Input patch [24] {122 s, 44 s} Ours {22 s, 1 s}
Figure 1. Rolling shutter motion deblurring: Comparison with

state-of-the-art method [24]. Also given is the time taken for each

ego-motion update and latent image update, respectively.

[27, 4] and continuity [4] in pose-space. Another research

direction in BMD is towards reducing computational com-

plexity. Cho and Lee [1] address this by utilizing the FFT

for space invariant blur. Hirsch et al. [7, 8, 5] extend it to the

space-variant case by approximating motion blur as space

invariant over small image-patches, and show competitive

quality with significant speed up.

However, the aforementioned deblurring methods pro-

posed for CCD cameras are not applicable to CMOS-RS

[24] since the RS motion blur formation is strikingly differ-

ent as illustrated in Fig. 2(a). CCD camera uses a global

shutter (GS), whereas CMOS cameras predominantly come

with an electronic RS. In contrast to GS in which all sen-

sor elements integrate light over the same time window (or

experience the same camera motion), each sensor row in

RS integrates over different time window, and thus a sin-

gle camera motion does not exist for the entire image. To

the best of our knowledge, only three works specifically ad-

dress motion deblurring in RS cameras – [26] for depth

camera videos, [10] for hardware assisted deblurring, and

the BMD method of [24]. Tourani et al. [26] use feature

matches between depth maps to timestamp parametric ego-

motion. However, they require multiple RGBD images as

input. Also, blurred RGB images, unlike depth maps, lack

sufficient feature matches for reliable ego-motion estima-

tion, which limits their functionality [26]. Hu et al. [10] use

smartphone inertial sensors for timestamping and is thus a

non-blind approach. Furthermore, it is device-specific and

the cumulative errors from noisy inertial sensors and cali-

bration govern deblurring performance [10].

14010



(b1) (b2)

(b3) (b4)

(a) (b)
Figure 2. (a) Working principle of CMOS-RS and CCD sensors.

(b) Effect of inplane rotation for a wide-angle system: (b1-b2) Two

blur kernels (or PSFs) with inplane rotation and (b3-b4) corre-

sponding PSFs without it. Note the variation in shape of the PSFs.

The current state-of-the-art RS-BMD [24] eliminates

device-specific constrains of [10, 26], and estimates times-

tamped ego-motion solely from image intensities. How-

ever, the method is limited to parametric ego-motion de-

rived specifically for hand-held blur. This renders it diffi-

cult to handle blur due to moving/vibrating platforms, such

as in robotics, drones, street view cars etc. Also, to pro-

vide a good initialization, [24] discards inplane rotations

and this precludes it from dealing with wide-angle systems

[24]. The reason is illustrated in Fig. 2(b) with two different

PSFs generated by a real ego-motion (using [12]) in a wide-

angle system with and without the inplane rotation, which

clearly reveals the inefficacy of their approximation. Wide-

angle systems provide a larger field-of-view as compared

to narrow-angle lenses, an important setting in most DSLR

cameras, mobile phones and drones (supporting data is pro-

vided in the supplemental material). Another significant

limitation of current RS deblurring methods [24, 10, 26] is

their huge computational load. Moreover, methods [24, 10]

require as input precise sensor timings tr and te during im-

age capture in order to fragment the estimated ego-motion

corresponding to each image-row (see Fig. 2(a)). Other RS

related works include RS super-resolution [19], RS image

registration [20], RS structure from motion [11], etc.

In this paper, we propose an RS-BMD method that not

only delivers excellent deblurring quality but is also com-

putationally very efficient (see Fig. 1). It works by leverag-

ing a generative model for RS motion blur (different from

the one commonly employed), and a prior to disambiguate

multiple solutions during inversion. Deblurring with our

scheme not only relaxes the constraints associated with cur-

rent methods, but also leads to an efficient optimization

framework. Our main contributions are summarized below.

• Our method overcomes some of the major drawbacks

of the state-of-the-art method [24], including inability

to handle full 3D rotations (or wide-angle systems) and

irregular ego-motion, and the need for sensor data.

• We extend the computationally efficient filter flow

(EFF) framework that is commonly employed in CCD

deblurring [8, 7] to RS deblurring. Relative to [24], we

achieve a speed-up by a factor of at least eight.

• Ours produces state-of-the-art RS deblurring results

for narrow- as well as wide-angle systems and under

arbitrary ego-motion, all of these sans sensor timings.

2. RS Motion Blur Model

In this section, we discuss the generative model for RS

motion blur. As mentioned earlier, the entire image in CCD

(or GS) cameras experiences the same ego-motion. Thus

the motion blurred image B ∈ R
M×N is generated by in-

tegrating the images seen by the camera along its trajectory

during the exposure duration [0, te] [24]. It is given by

B =
1

te

∫ te

0

Lp(t)dt, (1)

where p(t0) represents the general 6D camera pose at time

instant t0, Lp(t0) is the latent image L transformed accord-

ing to the pose p(t0), and te is the shutter speed.

In contrast, each RS sensor-row experiences different

ego-motion due to staggered exposure windows (Fig. 2(a)).

Unlike CCD, we cannot associate a global warp for the en-

tire latent image L, but need to consider each row sepa-

rately. Image row Bi (subscript i indicates ith row) of an

RS blurred image B = [B1
T B2

T · · · BM
T ]T is given by

Bi =
1

te

∫ (i−1)·tr+te

(i−1)·tr

L
p(t)
i dt : i ∈ {1, 2, · · ·,M}, (2)

where L
p(t0)
i is the ith row of the transformed image Lp(t0),

te is the shutter speed or row-exposure time in CMOS sen-

sors, and tr is the inter-row delay. All the current RS de-

blurring methods use a discretized form of Eq. (2) as the

forward model, and we refer to this as temporal model.

An equivalent representation of Eq. (2) can be obtained

by a weighted integration of the transformed image-rows

over camera poses, where the weight corresponding to a

transformed image-row with a specific pose determines

the fraction of the row-exposure time (te) that the camera

stayed in the particular pose. This is given by

Bi =

∫

P

w′
i(p) · L

p
i dp : i ∈ {1, 2, · · ·,M}, (3)

where P is the pose-space and w′
i(p0) is the weight cor-

responding to the transformed row L
p0

i . Unlike existing

RS deblurring works, we employ the second model and

discretize the pose-space in Eq. (3). We consider the dis-

cretization step-size to be such that there is less than one

pixel displacement between adjacent poses. Thus Eq. (3)

reduces to

Bi =
∑

p∈P

wi(p) · L
p
i : i ∈ {1, 2, · · ·,M}, (4)
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Figure 3. Left – Percentage pose-overlap Γ over block-size r for

standard CMOS-RS shutter speed (te) & an inter-row delay (tr)

of 1/100 ms, along with optimal block-size. Right – Top shows a

blurred patch from Fig. 7(a)(top), and middle and bottom patches

show the deblurred results without and with our RS prior.

where P is the discretized pose-space P, and the discrete

weight wi(p0) is the summation of all the continuous-

weights w′
i(p) for all p that lie in the half step-size neigh-

bourhood of pose p0. We identify the weights wi(p) as the

motion density function (MDF), as in [4]. We further mod-

ify Eq. (4) based on an important observation derived from

typical CMOS sensor settings.

Observation: In RS motion blurred images, there exists

an rb :1 << rb ≤ M , such that any block of contiguous

rows with size less than or equal to rb will have substantial

camera-pose overlap.

In RS sensors, the fraction of camera-pose overlap in r
contiguous rows is equal to the fraction of the time shared

among those rows. Thus, from Fig. 2(a), the percentage

camera-pose overlap Γ in a block of r rows is obtained as

Γ(r) = max

(

te − (r − 1) · tr
te

, 0

)

· 100. (5)

In Fig. 3(left), we plot Γ(r) for varying te and a fixed tr of

1/100 ms – a typical CMOS sensor has standardized te as

{1/1000 s, 1/500 s, · · · 1 s}, and tr in the range 1/200 ms to

1/25 ms [3]. It is evident from the figure that such a block-

wise segregation is possible for these standard settings with

camera-pose overlap of almost 80%. We do note that for

faster shutter speed (e.g., te < 1/250 s) rb can be close to

one; but for that setting motion blur will be negligible.

Based on this observation, we approximate each non-

intersecting block of rb rows that have substantial camera-

pose overlap to be governed by an individual MDF. We will

show that this approximation is reasonable for RS motion

blurred images. Thus our forward RS motion blur model is

given by

Bi =
∑

p∈P

wi(p) · L
p
i : i ∈ {1, 2, · · ·, nb}, (6)

where nb = M/rb is the total number of blocks, the blurred

image B has structure [B1
T ,B2

T , · · ·Bnb

T ] with Bi as

the ith block (bold subscript represents block), wi(p) is

the approximated MDF of ith block, and L
p0

i is the ith

block of the transformed image L with pose p0. (Note that

for rb = M , Eq. (6) reduces to CCD motion blur model

[16, 28, 27, 7, 4]). We identify Eq. (6) as our pose-space

model. This is unlike the temporal model of [24] which

constrains the motion model to be parametric. Therefore,

our model can accommodate different kinds of motion tra-

jectories including camera shake and vibrations.

3. RS Deblurring

We formulate a maximum a posteriori (MAP) framework

for estimation of both the latent image and the block-MDFs.

In this section, we introduce a new prior for MDF to enable

RS motion deblurring.

A direct MAP framework for unknown θ = {L,wi :
1 ≤ i ≤ nb} is given as

θ̂ = min
θ

nb
∑

i=1

‖(Bi −
∑

p∈P

wi(p) · L
p
i ‖2 + λ1‖∇L‖1

+λ2

nb
∑

i=1

‖wi‖1,

(7)

where wi is the vector containing weights wi(p) for poses

p ∈ P and ∇L is the gradient of L. We assume that the

optimal block-size rb is known (we relax this subsequently

in section 4.4). The first term in the objective is data fidelity

that enforces our forward blur model of Eq. (6). To reduce

ill-posedness, we too enforce a sparsity prior on the image-

gradient following [27, 4]. We also impose a sparsity prior

on the MDF weights since a camera can transit over only

few poses in P during exposure. In the literature on CCD

deblurring (i.e., nb = 1) it is well-known that the objective

in Eq. (7) is biconvex, i.e., it is individually convex with re-

spect to the latent image and MDF, but non-convex overall;

and convergence to a local minima is ensured with alterna-

tive minimization of MDF and latent image [27, 4, 1]. How-

ever, RS sensors introduce a different challenge if Eq. (7) is

directly considered (Fig. 3(right), middle patch).

Claim 1: For an RS blurred image, there exist multiple so-

lutions for the latent image-MDF pair in each individual

image-block. They satisfy the forward model in Eq. (6) and

are consistent with the image and MDF prior in Eq. (7).

Before giving a formal proof, we attempt to provide

some intuition. Considering only inplane rotations, Fig. 4

illustrates a multiple-solution case where one latent image-

block (of solution-pair {L′
i,w

′
i}) is rotated anti-clockwise

and the second image-block (of solution-pair {L′′
i ,w

′′
i }) is

rotated clockwise, but both result in the same input image-

block Bi. This can also be visualized as a natural escalation

of the notion of shift-ambiguity in patch-wise PSF estimates

[17] all the way to block-wise MDFs.
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Figure 4. Illustration of block-wise latent image-MDF pair am-

biguity for a single inplane rotation (only 1D pose-space). Both

solution-pairs 1 and 2 result in the same blurred block Bi.

Proof: Let Bi be an RS blurred block formed by latent im-

age L and MDF wi through Eq. (6). We form a second RS

blurred block B′
i by considering a nonzero pose p0 ∈ P as

B′
i =

∑

p′∈P

wi(p0 + p′) · Lp0+p′

i , (8)

where L
p0+p′

i is the ith block of the transformed version

of Lp0 with pose p′, and wi(p0 + p′) is obtained by shift-

ing wi(p
′) with a negative offset of p0. Even though the

latent image-MDF pairs for Bi and B′
i are different, i.e.,

{L, wi(p)} in Eq. (6), and {Lp0 , wi(p0 + p)} in Eq. (8),

we shall prove that both Bi and B′
i are equal. Construct a

set SBi with elements as all individual additive components

of Eq. (6) that add up to get Bi. Similarly, form set SB
′
i with

all additive components of Eq. (8). Any element in SBi is

represented as a singleton {wi(p) · L
p
i } with p ∈ P. The

same element is present in SB
′
i, i.e., at p′ = −p0 + p in

Eq. (8), which implies SBi ⊆ SB
′
i. Similarly by considering

p = p0 + p′ in Eq. (6), it follows that SB
′
i ⊆ SBi. Since

SBi ⊆ SB
′
i and SB

′
i ⊆ SBi, both the sets are equal, and so are

Bi and B′
i. Also, as the latent images L and Lp0 are related

by a global warp, the sparsity in gradient domain (i.e., im-

age prior in Eq. (7)) is valid for both. Since both the MDFs

have equal weight distribution, the sparsity in weights (i.e.,

MDF prior) is also identical for both. Hence proved. �

If we consider Eq. (7) alone for RS deblurring, this ambi-

guity can cause the latent image portion of individual block

to transform independently (see Fig. 4). This can result in an

erroneous estimate of the deblurred image, where the latent

image portions corresponding to different blurry blocks are

incoherently combined (Fig. 3(right)). To address this issue,

we introduce an additional prior on the MDFs as

prior(w) =

nb
∑

i=1

nb
∑

j>i

‖Γ (rb(j− i+ 1)) · (wi −wj)‖
2
2, (9)

where Γ (rb · (j− i+ 1)) is the percentage overlap (Eq. (5))

of all groups of blocks between (and including) the ith and

jth block, and w is a vector obtained by stacking all the un-

known MDFs {wi : 1 ≤ i ≤ nb}. This prior restricts drift-

ing of MDFs between neighbouring blocks (i.e., high cost),

but allows MDFs to change between distant blocks (i.e., low

cost). It also serves to impart an additional dependency be-

tween block MDFs which Eq. (7) does not possess. This

helps to reduce the ill-posedness of ego-motion estimation.

Claim 2: The prior in Eq. (9) is a convex function in w, and

can be represented as a norm of matrix vector multiplica-

tion, i.e., as ‖Gw‖22, with sparse G. (Proof is given in the

supplementary material.) Thus inclusion of the prior does

not alter the biconvexity of Eq. (7) (which is necessary for

convergence), and paves the way for efficient implementa-

tion (as we shall see in section 4.2). We identify Eq. (9) as

our proposed RS prior.

4. Model and Optimization

State-of-the-art CCD-BMD methods [16, 28, 27, 1] work

by alternative minimization (AM) of MDF and latent image

over a number of iterations in a scale-space manner, (i.e.,

AM proceeds from coarse to fine image-scale in order to

handle large blurs). As we shall see shortly, this requires

generation of blur numerous times. Efficiency of the blur-

ring process is a major factor that governs computational

efficiency of a method. In this section, we first discuss how

our pose-space model allows for an efficient process for RS

blurring (analogous to CCD-EFF [7, 8]). Next, we elaborate

on our AM framework, and eventually relax the assumption

of the need for sensor information.

4.1. Efficient Filter Flow for RS blur

Following [8], we approximate motion blur in individ-

ual small image patches as space invariant convolution with

different blur kernels. We represent this as

B =

R
∑

k=1

C
†
k ·

{

a(k,b(k)) ∗ (Ck · L)
}

, (10)

where R is the total number of overlapping patches in la-

tent image L, b(k) is a function which gives the index of

the block to which the major portion of the kth patch be-

longs (i.e., b(k) ∈ {1,2, · · ·nb}), Ck · L is a linear opera-

tion which extracts the kth patch from L, and C
†
k inserts

the patch back to its original position with a windowing

operation. a(k,b(k)) represents the blur kernel which when

convolved with the kth latent image-patch creates blurred

patch. Considering b(k) as j, we can write

a(k,b(k)) =
∑

p∈P

wj(p) · δk(p), (11)

where δk(p) is a shifted impulse obtained by transforming

with pose p an impulse centered at the kth patch-center.

Intuitively, the blur kernel at patch k due to an arbitrary

MDF is the superposition of the δk(p)s generated by it.

Since δk(p) is independent of the latent image and the

MDF, it needs to be computed only once, and can be subse-

quently used to create the blur kernel in patch k for any
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image. Thus, given a latent image L and MDF of each

block, our blurring process first computes kernels in R
patch-centres using the precomputed δk(p) (Eq. 11), con-

volves them with their corresponding latent-image patches

and combines them to form the RS blurred image (Eq. (10)).

We carry out convolution using the efficient FFT. Note that

the CCD-EFF is a special case of Eq. (10) under identical

MDFs (wi = w ∀i) or the single block case (nb = 1).

We next discuss our AM at the finest level. The same

procedure is followed at coarser levels and across iterations.

4.2. Ego­Motion Estimation

The objective of this step is to estimate the ego-motion at

iteration d + 1 (i.e., wd+1) given the latent image estimate

at iteration d (i.e., L(d)). We frame our MDF objective

function in the gradient domain for faster convergence and

to reduce ill-conditionness [28, 27, 1, 7]. We give it as

wd+1 = argmin
w

‖Fw−∇B‖22+α‖Gw‖22+β‖w‖1, (12)

where the information of the gradient of L(d) is embedded

in blur matrix F, ∇B is the gradient of B, and ‖Gw‖2 is

the prior we introduce for RS blur (Eq. 9). We further sim-

plify the objective in Eq. (12) by separating out the sparsity

prior as a constraint and taking the derivative. This yields

wd+1 = argmin
w

‖(FTF+ αGTG)w − FT∇B‖22

such that ‖w‖1 ≤ β′.
(13)

A major advantage of our pose-space model over the tem-

poral model of Eq. (2) is that we can formulate ego-motion

estimation as in Eq. (13). This is LASSO [25] of the form

argminx ‖Ax− b‖2 : ‖x‖1 ≤ γ, and has efficient solvers

(LARS [2]). Since LASSO needs no initialization, we can

account for inplane rotations too. This allows us to handle

even wide-angle systems unlike [24], which discards it to

eliminate the back-projection ambiguity of blur kernels in

its initialization step.

Suppose a blurred image of size M ×N and nb number

of MDFs of length l (i.e., block-size rb = M/nb). Then the

dense matrix F in Eq. (13) is nb times larger compared to

the CCD case. This escalates the memory requirement and

computational cost for RS deblurring; i.e., a naive approach

to create FTF (with size nb · l × nb · l) is to form a large

matrix F of size MN × nb · l (where MN >> nbl), and

perform large-matrix multiplication. We avoid this problem

by leveraging the block-diagonal structure of F, and thus

for FTF, that is specific for RS blur. The jth column of

the ith block-matrix Fi of F (of size rbN × l) is formed by

transforming ∇L(d) with the pose of wi(j), and vectorizing

its ith block. For this, we employ the RS-EFF. Since each Fi

can be generated independently, we bypass creating F, and

instead directly arrive at the block-diagonal matrix FTF,

one diagonal-block at a time, with the jth block as Fj
TFj.

A similar operation is also done for FT∇B. Since G is

sparse, GTG in Eq. (13) can be computed efficiently [29].

4.3. Latent Image Estimation

Given the ego-motion at iteration d+1 (i.e., wd+1), this

step estimates the latent image L(d+ 1). Since ego-motion

estimation is based on image gradients (Eq. (13)), only the

latent-image gradient information needs to be correctly es-

timated, as pointed out in [1, 7, 27]. This eliminates the use

of computationally expensive image priors in the alternative

minimization step. We obtain the latent image by inverting

the forward blurring process in Eq. (10), i.e.,

L(d+ 1) =

R
∑

k=1

C
†
k · F−1

(

1

F(a(k,b(k)))
⊙ F(Ck ·B)

)

,

(14)

where a(k,b(k)) is generated using wd+1, F and F
−1

are the forward and inverse DFT, respectively, and ⊙ is

a point-wise multiplication operator that also suppresses

unbounded-values. We combine patches using Bartlett-

Hann window that tapers to zero near the patch boundary.

It has 70% overlap for patches that span adjacent blocks (to

eliminate the effect of sudden changes in MDFs), and 50%
for the rest. It is important to note that explicit block-wise

segregation of blurred image is employed only for MDF es-

timation (to create FTF in Eq. (13)), and not for latent im-

age estimation where the estimated MDFs are utilized only

to project PSFs in overlapping patches, akin to CCD-BMD

[27, 7, 8]. From a computational perspective, this is equiv-

alent to extracting each patch of the blurred image, decon-

volving it with the corresponding blur kernel (created using

Eq. (11)) with FFT acceleration, and combining the decon-

volved patches to form the updated latent image. For the

final iteration (in the finest level), instead of FFT inversion

(as in Eq. (14)), we adopt Richardson-Lucy deconvolution

[15] which considers natural image-priors.

4.4. Selection of Block­Size

In section 3, we had assumed the availability of sensor

timings tr and te to optimally segregate image-blocks (us-

ing Γ(r) in Eq. (5)) and to derive the RS prior (through Γ in

Eq. (9)). In this section, we quantify camera-pose overlap

and relax the need for sensor timings.

To analyse the effect of block-size rb, we conducted an

experiment using real camera trajectories from the dataset

of [12] with CCD blur. Since all the rows would experi-

ence a common trajectory, ideally all block MDFs should

match irrespective of the chosen number of blocks. We esti-

mate MDFs without using the RS prior (α = 0 in Eq. (13)),

align their centroids, and use individual MDF to compute

PSFs in all R patches. The PSFs are then correlated with

the ground-truth PSFs using the kernel similarity metric in
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[9] (centroid alignment of MDFs was done since correlation

cannot handle arbitrary rotation between PSFs). We plot in

Fig. 5(left) average kernel similarity and time taken for AM

steps at the finest level for different block-sizes. A key ob-

servation is that as the block-size rb falls below 134 (i.e.,

nb ≥ 6 for an 800 × 800 image dimension), kernel sim-

ilarity drops significantly. This ineffectiveness for smaller

blocks is due to lack of sufficient image gradients within in-

dividual blocks for MDF estimation. Also, the computation

time increases as the block-size is reduced. These factors

translate to a pose-intersection of 80%, which gives a reli-

able block-size for typical CMOS settings (Fig. 3(left)).

Apart from sensor timings, camera ego-motion can also

influence optimal block-size, e.g., if the camera moves

slowly during the exposure of few blocks, merging them as

a single block can reduce the number of unknown MDFs.

Hence, we allow for variable-sized blocks. We can segre-

gate image-blocks without using sensor information as de-

scribed next. Given a blurred image, we convert the image

to a coarse level (M0×N0), and estimate MDFs without the

RS prior assuming uniform block-size of r0. For each MDF,

we find kernel similarity with the neighbouring MDFs (as

described earlier). Adjacent blocks with kernel similarity

greater than 0.8 are combined until no such merging is pos-

sible. The resultant block-sizes at the coarse level multi-

plied by the upsampling factor to the finest image-level are

considered for final segregation. For the RS prior, since

the pose-overlap Γ(r) in Eq. (5) is parametrised by a single

unknown (which is tr/te), we solve for tr/te (without re-

quiring it from RS sensor) assuming the number of rows (r)

for the smallest segregated block as having 80% Γ.

4.5. Computational Aspects

First, our pose-space model (Eq. (6)) performs RS blur-

ring efficiently as already discussed in section 4.1. In con-

trast, the blurring process adopted in current RS deblurring

methods is relatively quite expensive. That is, given a latent

image L and temporal ego-motion (with Nt temporal bins),

an RS blurred image is created by Nt individual transfor-

mations of L – each using individual warping and bilinear

interpolation over all image-locations – and the rows are

combined using sensor timings (Eq. (2) and Fig. 2). Sec-

ond, our pose-space model together with the RS prior is

amenable to the very-efficient LARS framework (Eq. (13)).

In contrast, because of the parametric model (polynomial

in [24] and splines in [26]) for ego-motion in temporal do-

main, those methods need to employ non-linear optimiza-

tion (Eq. (9) in [24] and Eq. (8) in [26]), which is much

more expensive than LARS [2].

Third, our method employs patch-wise deblurring lever-

aging the very efficient FFT (rather than optimizing the full

image with prior). In contrast, as stated under Eq. (15)

of [24], for every iteration it must optimize the high-

Image Ego-motion Latent image

dimension estimation time (s) estimation time (s)

ht. × wd. [24] Ours [24] Ours

800×800 216.01 29.58 258.65 1.44
450×800 122.28 22.48 44.23 1.30
400×400 73.26 10.34 23.82 0.62

Table 1. Time comparisons with state-of-the-art [24].

dimensional latent image with a costly prior as

L(d+ 1) = argmin
L

‖XL−B‖22 + ‖∇L‖1, (15)

where L and B are vectorized latent and blurred images of

size MN × 1, respectively, and X is a sparse matrix of

size MN × MN . Generating X using the expensive for-

ward model and optimization with a costly prior is a serious

computational bottleneck for [24].

To determine the computational gains of our proposal,

we conducted experiments on variable-sized images. The

average time taken for each AM step at finest level using

MATLAB is listed in Table 1 (using the code of [24] from the

author’s website). It is clearly evident that our method of-

fers significant computational gains. Note the improvement

of ego-motion estimation from 216 to 30 seconds, and latent

image estimation from 258 to 2 seconds for an 800 × 800
image. Also, observe the steep rise in computational cost

for [24] with image size, unlike ours.

5. Experimental Results

In this section, we demonstrate that our method can han-

dle both wide- and narrow-angle systems, arbitrary ego-

motion, and RS as well as GS blurs. We used default pa-

rameters for all the competing methods. Our supplementary

provides our system specification and the parameters used.

Datasets used: For quantitative evaluation, we created RS

motion blurred images using hand-held trajectories from the

benchmark dataset in [12]. We used focal length 29 mm

(for wide-angle) and 50 mm (for narrow-angle), and sensor

timings of tr = 1/50 ms and te = 1/50 s (as in [24]). Vi-

bration motion was taken from [6]. For real experiments,

we considered individually the cases of RS narrow-angle,

RS wide-angle and CCD blurs. For the narrow-angle case,

we used the dataset in [24]. Since RS wide-angle con-

figuration has not been hitherto addressed, we created an

RS wide-angle blur dataset which contains images captured

with iPhone 5S (focal length 29 mm). We also considered

drone images from the internet characterizing irregular ego-

motion. For CCD blur, we used the dataset in [16].

RS deblurring comparisons: We considered mainly the

current RS-BMD state-of-the-art method [24] for evalua-

tion. Since [10] requires inertial sensor data, and [26] uses
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Figure 5. Left – Analysis on the effect of block-size. Right portion – Synthetic experiments with {IFC,VIF}: (a-c) For an RS wide-

angle system ([24] - {1.31, 0.23}, Ours - {1.97,0.36}), (d-f) For vibratory motion in an RS system ([24] - { 0.49, 0.076 }, Ours -

{0.59,0.086}), and (g-i) For GS blur ([24] - {1.25, 0.19}, Ours - {2.11,0.32}). (Full images are provided in the supplementary.)

multiple RGBD images, these techniques do not address

BMD and thus have been omitted for comparisons (also

their codes are not available). To analyse the performance

of CCD-BMD methods on CMOS data, we also tested with

[28]. Since the space-variant (SV) code of [16] (the best

CCD-BMD) is not available, we evaluated using [28] (the

second best). For comparisons, we downloaded the codes

from the websites of the authors of [24] and [28]. We pro-

vide several additional comparisons in the supplementary.

GS deblurring comparisons: Since the SV code of [16]

is not available, we report results on the SV examples pro-

vided in [16]. We also give comparisons with other SV-

BMD methods [28, 27, 4] in the supplementary.

Quantitative evaluation: As pointed out in a very recent

comparative study of BMD [13], information fidelity crite-

rion (IFC) [23] and visual information fidelity (VIF) [22]

are important metrics for evaluating BMD methods (higher

values are better). Thus we adopt the same. Also, we wish

to highlight the observation in [21] that ringing artifacts in

deblurring are mainly caused by ego-motion estimation er-

ror, which can be either due to inaccurate blur/ego-motion

model or ineffectiveness of optimization. Hence, we also

use ringing as an evaluation tool. For visual comparisons,

we show patches from upper and lower image portions.

First, we consider a wide-angle system (29 mm and tra-

jectory #39 [12]) in Figs. 5(a-c). As shown in Fig. 5(b),

the result of [24] shows moderate ringing artifacts in the

top patch (in the wall-linings and lantern), whereas resid-

ual blur exists in the lower patch (in the table structure). In

contrast, our result (Fig. 5(c)) recovers fine details in both

the patches and with no ringing artifacts. This reveals our

method’s ability to deal with wide-angle systems, unlike

[24] which is designed for only narrow-angle systems.

Next we consider vibration ego-motion (Figs. 5(d-f)) that

simulates a robotic system with feedback control [6]. Since

[24] considers only narrow-angle systems, we also limit

ourselves to narrow-angle setting (50 mm), for a fair com-

parison. We found that the polynomial model, as consid-

ered in [24], fails to approximate these vibrations (illustra-

tions are given in the supplementary). It is evident from
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Figure 6. Quantitative evaluation on benchmark dataset [12] with

RS settings. The performance of our method is comparable to that

of [24] for narrow-angle systems but outperforms [24] for wide-

angle systems; both sans RS timings tr and te, unlike [24].

the results of Fig. 5(e) that the estimated polynomial model

fits the initial portion of the trajectory well (top-patch is de-

blurred), but diverges for the later portion (heavy ringing

in bottom patch). In contrast, our method gives good de-

blurred result uniformly (Fig. 5(f)), which underscores the

importance of our non-parametric approach to ego-motion.

Finally, we evaluate the performance of RS BMD meth-

ods for GS deblurring in Figs. 5(g-i). Here also, we limit

to narrow-angle systems (50 mm, trajectory #2 [12]). Ei-

ther due to the ineffectiveness of polynomial approxima-

tion or initialization error, the result of [24] in Fig. 5(h) has

moderate ringing artifacts with residual blurs. Our result in

Fig. 5(i) reveals that our model generalizes to GS blur well,

as compared to [24].

A detailed evaluation on dataset [12] for narrow- and

wide-angle systems is given in Fig. 6. It clearly reveals that

our method is either comparable to or better than [24] for

narrow-angle systems. The performance of our method is

strikingly superior for wide-angle systems. Note that all

these are achieved without requiring tr and te, unlike [24].

Real examples: In Fig. 7, we evaluate our method on real

examples for RS narrow-angle systems using the dataset of

[24]. The output of [24] (third column) contains residual

blur and ringing artifacts compared to ours. Specifically, in

the top-row, the characters in patch 1 and details in patch 2

are sharper in our output. In the second-row, the minute

structures of the bag-zipper in patch 1 are restored well,
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(a) Input (b) Xu et al. [28] (c) Su and Heidrich [24] (d) Ours

Figure 7. Comparisons for RS narrow-angle blur dataset of [24]. (a) Input, (b) CCD-BMD [28], (c) State-of-the-art RS-BMD [24], and (d)

Ours. Our method provides negligible ringing artifacts and fine details, as compared to [24]. (Table 1(450×800 entry) gives the speed-up.)

(a) Input (b) Xu et al. [28] (c) Su and Heidrich [24] (d) Ours

Figure 8. Comparisons for RS wide-angle examples (first row - low-light case, second row - well-lit case, and third row - drone imaging).

(a) Input, (b) CCD-BMD [28], (c) State-of-the-art RS-BMD [24], and (d) Ours. Ours consistently outperforms competing methods.

while ringing in patch 2 is negligible. In Fig. 8, we evaluate

our algorithm for wide-angle systems (including irregular

camera motion). The first row shows the case of low-light

imaging, the second row is a well-lit scenario, and the third

row is a drone image (irregular ego-motion). It is evident

from the results of Fig. 8 that our method consistently de-

livers good performance over [24] in all the scenarios. The

performance degradation of [24] in Fig. 8 may be attributed

to its inability to handle wide-angle systems (first and sec-

ond rows) and irregular ego-motion (third row). Figs. 7 and

8 (second column) also reveal the inability of CCD deblur-

ring methods to handle blur in RS systems.

6. Concluding remarks

In this paper, we proposed a block-wise RS blur model

for RS deblurring. We provided a detailed analysis of this

model, and addressed invertibility issues using a computa-

tionally tractable convex prior. We also proposed an effi-

cient filter flow framework that offers significant computa-

tional edge. Experiments reveal that our algorithm achieves

state-of-the-art results in terms of deblurring quality as well

as computational efficiency. Unlike existing RS deblur-

ring methods, it can seamlessly accommodate wide- and

narrow-angle systems, blur due to hand-held and irregular

ego-motion, and GS as well as RS images; all without the

need for sensor information. Our future work will consider

incorporating effective priors such as those used in CCD

cameras into the realm of RS deblurring.
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(a) With inplane rotations (b) Without inplane rotations

Figure S1. Full set of PSFs of Fig. 2(b) illustrating the effect of
inplane rotations for wide-angle setting (29 mm) using [6].

We begin by revisiting the problem motivation. This is
followed by section S2 which contains our proof for claim
2 (section 3). Section S3 gives implementation details, and
section S4 is devoted to additional evaluations.

S1. Problem Motivation (illustrative)
As mentioned in section 1 in the main paper, our method

advances the state-of-the-art in RS deblurring, as it can deal
with wide-angle configuration, unconstrained ego-motion
and unconstrained shutter, without the need for timing in-
formation. Here, we further elaborate the significance of
these problems that we have addressed in our work.
Unconstrained Focal-length: The PSFs provided in
Fig. 2(b), which illustrates the importance of inplane rota-
tions for wide-angle systems, is created using a focal length
of 29 mm and real hand-held trajectory #39 in [6]. The full
set of PSFs is provided in Fig. S1. We give in Fig. S2 focal-
length settings of some popular CMOS imaging devices. It
is clearly evident from the figure that wide-angle configura-
tions are indeed important in photography (and predominant
in cell-phones and drone cameras). However, the state-of-
the-art RS-BMD [11] works only for narrow-angle settings.
Hence, it is important to accommodate wide-angle settings.
Unconstrained Ego-motion: Even though a polynomial
function can reasonably model human camera shake, RS
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Figure S2. Focal lengths of some popular CMOS devices. Note the
wide-angle setting predominant in cell-phone and drone cameras.

blur also exists in images captured by drones, street view
cars, etc., wherein the ego-motion is seldom regular [11].
Fig. S3 illustrates this fact with an under-damped response
of a robotic system (which we employed in Figs. 5(d-f) us-
ing [4]). Also given is the approximation using a fourth or-
der polynomial (as used in state-of-the-art RS-BMD [11]).
From the plot it is clear that the polynomial model is un-
able to adequately capture the motion, thus underscoring
the need for handling unconstrained ego-motion.
RS timing information: Both shutter speed (te) and inter-
row delay (tr) are required a priori in state-of-the-art RS-
BMD [11] to fragment the motion trajectory for each image-
row. Getting tr from a camera requires processing of videos
taken using the same camera setting (section 5.2 in [11]).
Deriving both te and tr without the meta-data and camera
information further escalates the difficulty. In contrast, our
method does not need any a priori timing information. Note
that we estimate the value tr/te for the RS prior in Eq. (9)
solely from image intensities as discussed in section 4.4.

S2. Proof of Claim 2

Claim 2: The prior which restricts drifting of TSFs between
blocks (in Eq. (9)) is a convex function in w, and can be
represented as a norm of matrix vector multiplication, i.e.,
as ‖Gw‖22, with sparse G.
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Figure S3. Vibrational ego-motion of a robotic system (using [4]).
The polynomial model is inadequate to capture these trajectories.

To prove this, we draw from the following well-known
properties of convex function [1] which are a linear function
is always convex (prop. 1), composition of convex functions
is always convex (prop. 2), and non-negative sum of convex
functions is convex (prop. 3).
Proof: Considering nb number of image blocks and each
block-MDF wi having length l, an individual additive com-
ponent in our RS prior (in Eq. (9)) can be represented as
‖Γ (rb(j− i + 1)) ·S(i,j)w‖22, where S(i,j) is a matrix of di-
mension l × nb · l, with all zeros except two scaled identity
matrices of dimension l × l corresponding to ith TSF (with
scale 1) and jth TSF (with scale −1). Therefore, the term
{Γ (rb(j− i + 1)) ·S(i,j)w} is a linear function in w. Since
‖Γ (rb(j− i + 1)) · S(i,j)w‖22 is a composite of squared L2

norm (which is convex) of a linear function in w, each addi-
tive component is convex (props. 1 and 2). Resultantly, the
sum of all additive components in Eq. (9), i.e., prior(w), is
a convex function in w (prop. 3).

Also, prior(w) can be represented as ‖Gw‖22, where
matrix G is obtained by vertically concatenating matrices
{Γ (rb(j− i + 1)) · S(i,j)} corresponding to the individual
additive component in RS prior. Since S(i,j) is a sparse ma-
trix, G will also be sparse. Hence proved. �

S3. Implementation Details

We implemented our algorithm in MATLAB. We empiri-
cally set 7 scales, each with 7 iterations, in our scale-space
framework (section 4). The blurred image in the ith scale
is formed by downscaling the input image by a factor of
(1/
√

2)i−1. To start the alternative minimization, the coars-
est scale MDFs are initialized with Kronecker delta. For
ego-motion estimation (section 4.2), we consistently used
the RS-prior regularization (α in Eq. (13)) in level i as 27−i

(so that the RS prior can cope with the increasing image
size, and thus the data fidelity magnitude ‖Fw − ∇B‖22,
in finer levels). We used the MDF regularization β′ (in
Eq. (13)) as 0.01. For latent image estimation (section 4.3),
we used R = 48 such that each image-patch is square, and
with 6 patches along the shorter dimension and 8 along the
longer dimension. For the Richardson-Lucy deconvolution
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Figure S4. Cumulative time for different processes. Note the com-
putational gains of the prior-less RS-EFF based image estimation.

(employed in the last iteration of the finest level), we used a
total number of 30 iterations. For the selection of block-size
(section 4.4), we used an initial block-size r0 as 145, and a
downscaling factor of 2 (i.e., M0 = M/2 and N0 = N/2).

Running time reported in Table 1 is obtained on the same
system with an Intel Xeon processor with 32 GB memory.
We found that for deblurring an 800 × 800 RGB image
(of maximum blur-length of 30 pixels), our unoptimized
MATLAB implementation took about 9 minutes. Fig. S4
provides a detailed break-up of the time taken for each es-
timation step. In fact, observe that a large fraction of the
total time is utilized for latent image estimation in the fi-
nal iteration which involves a costly image-prior (see sec-
tion 4.3). This underscores the importance of our efficient
prior-less estimation in the initial iterations derived from
RS-EFF (Eq. (14)).

S4. Additional Evaluations
We provide in Fig. S5 iteration-by-iteration results to il-

lustrate how the algorithm works. In Fig. S6, we give full
images corresponding to the patches of synthetic experi-
ment results provided in Figs. 5(a-i). In Figs. S7-S11, we
give additional evaluations for the real RS-BMD examples
provided in Figs. 7 & 8. These include SIV-BMD [2] and
RS rectification followed with SIV-BMD [2] (as reported in
[11]), and state-of-the-art CCD-BMD [9]. We also consider
BMD without our RS prior to illustrate the ego-motion am-
biguity in RS-BMD. For low-light case, we consider [5] that
specifically addresses low-light BMD (albeit for CCD cam-
eras). The codes for [5], [11] and [9] are downloaded from
the author’s website and executed using default parameters.
Additional examples under different lighting condition and
for wide-angle settings are given in Fig. S12.

For sake of completeness; we provide GS deblurring
comparisons with state-of-the-art CCD-BMD methods of
[9, 8, 10, 13, 12] and [3] in Figs. S13 & S14. We eval-
uated on the examples from the dataset of [7] and [9] us-
ing their reported results. The results show that our method
works equally well for CCD cameras and importantly, with-
out warranting any prior knowledge of the shutter.



Scale 3, Iteration 7

Scale 2, Iteration 7

Scale 1, Iteration 5

Scale 1, Iteration 6

Scale 1, Iteration 7

(a) MDF 1 (w1) (b) MDF 2 (w2) (c) MDF 3 (w3) (d) Latent image (L)

Figure S5. Iteration-by-iteration results of the alternative minimization of block-wise MDFs and latent image: (a-c) Estimated block-wise
MDFs and (d) Estimated latent image. Notice the variation in block-wise MDFs, which depicts the characteristic of RS blur (as shown in
Fig. 3). Also, observe the convergence of the block-wise MDFs through iteration 5 to 7 in the finest image scale (last three rows).



(a) Input (b) Su and Heidrich [11] (c) Ours

Figure S6. Full-sized images corresponding to the image patches given in Figs. 2(a-i): First row gives a case of wide-angle system
(Figs. 2(a-c)), second row gives a case of vibratory motion (Figs. 2(d-f)), and third row gives a case of CCD-blur (Figs. 2(g-i)). (Best
viewed on high-resolution display with zoom-in corresponding to an 800× 800 image size.)



(a) Input (b) Cho and Lee [2] (c) RS rect. + [2]

(d) Xu et al. [13] (e) Pan et al. [9] (f) Su et al. [11]

(g) Ours without RS prior (h) Ours with RS prior (i) Patches of (g) in top, and (h) in bottom

Figure S7. Detailed comparisons for RS narrow-angle example in dataset [11] (Fig. 7-top-row). Note the effect of incoherent combination
due to the block shift-ambiguity (section 3, claim 1) in (i)-first row, which is successfully suppressed by our RS prior ((i)-second row).

(a) Input (b) Cho and Lee [2] (c) RS rect. + [2]

(d) Xu et al. [13] (e) Pan et al. [9] (f) Su et al. [11]

(g) Ours without RS prior (h) Ours with RS prior (i) Patches of (g) in top, and (h) in bottom

Figure S8. Detailed comparisons for RS narrow-angle example in dataset [11] (Fig. 7-second-row). Our method recovers finer details (see
bag-zipper in patch 1), and deblur with negligible ringing artefacts (see bag-badge in patch 2), as compared to competing methods.



(a) Input (b) Xu et al. [13] (c) Pan et al. [9]

(d) Hu et al. [5] (e) Su et al. [11] (f) Ours

Figure S9. Detailed comparisons for RS wide-angle example (Fig. 8-first row). In contrast to competing methods, our method models the
RS ego-motion better (observe the residual blur in the letters, and the repeated occurrence of the longest grass leaf in (c)).

(a) Input (b) Xu et al. [13] (c) Pan et al. [9]

(d) Su et al. [11] (e) Ours without RS prior (f) Ours

Figure S10. Comparisons for RS wide-angle case (Fig. 8-second row). White boxes in images (e) and (f) show the effect of RS prior.

(a) Input (b) Xu et al. [13] (c) Pan et al. [9]

(d) Su et al. [11] (e) Ours without RS prior (f) Ours

Figure S11. Comparisons for RS wide-angle example (Fig. 8-third row). White box in images (e) and (f) shows the effect of RS prior.



(a) Input (b) Su et al. [11] (c) Ours

Figure S12. Additional RS comparisons with state-of-the-art RS-BMD method [11] under different lighting conditions and for wide-angle
settings. Note the inefficacy of the competing method in dealing with wide angle systems.

(a) Input (b) Michaeli et al. [8] (c) Perrone et al. [10]

(d) Xu et al. [13] (e) Pan et al. [9] (f) Ours

Figure S13. Comparisons for CCD blur example in dataset [7]. Our result is comparable with [8, 10, 13] and [9].

(a) Input (b) Gupta et al. [3] (c) Whyte et al. [12]

(d) Xu et al. [13] (e) Pan et al. [9] (f) Ours

Figure S14. Comparisons for CCD blur example in dataset [9]. Our result is comparable with [3, 12, 13] and [9].
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