
Complex Valued Convolutional Neural Networks

for Image Restoration

Thesis to be submitted in the partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

IN

MATHEMATICS AND COMPUTING

by

Amara Datta Dola

(19MA20003)

Under the guidance of

Prof. Mahesh Mohan M R and

Coguide: Prof. Dipankar Ghosh

Department of Mathematics
Indian Institute of Technology, Kharagpur

28th Nov, 2023



Department of Mathematics

Indian Institute of Technology,

Kharagpur, India - 721302

CERTIFICATE

This is to certify that we have examined the thesis entitled Complex Valued Con-

volutional Neural Networks for Image Restoration, submitted by Amara

Datta Dola (19MA20003) an undergraduate student of Department of Mathe-

matics in partial fulfillment for the award of degree of Master of Science. We hereby

accord our approval of it as a study carried out and presented in a manner required

for its acceptance in partial fulfillment for the undergraduate Degree for which it has

been submitted. The thesis has fulfilled all the requirements as per the regulations

of the Institute and has reached the standard needed for submission.

Guide’s Signature Co-Guide’s Signature

Date

ii



ACKNOWLEDGEMENTS

I would like to express my deepest gratitude to my supervisor, Prof. Mahesh Mohan

M R, who introduced me to the exciting field of complex valued AI. His profound

expertise and insightful guidance have been instrumental in the progress and success

of my research.

I am also indebted to the faculty and staff, whose assistance have been invaluable

throughout my academic journey. Their willingness to share knowledge and offer

advice has greatly enriched my learning experience.

Special thanks are due to my peers and colleagues who have provided me with

support and collaboration. Their perspectives and feedback have been a source of

encouragement and growth.

Finally, and most importantly, my heartfelt thanks go to my family. Their unwa-

vering support, endless patience, and belief in my abilities have been the cornerstone

of my strength and perseverance. This accomplishment is as much theirs as it is mine.

iii



ABSTRACT

Convolutional Neural Networks (CNNs) are a cornerstone in deep learning, especially

for computer vision tasks. In the literature hitherto, most research in CNN focuses

on real-valued data like images, videos, speech, etc. However, there exist many in-

herently complex-valued signals like SAR, MRI, wind, etc that are not well studied

using CNNs. These complex valued signals are successfully used for diverse practical

applications in agriculture, medicine, earth sciences, etc. Similarly, several traditional

studies have shown that some computer vision problems are effectively addressed in

the complex-valued domain, such as within Fourier transform domains.

In the pre-deep learning era, several studies have indicated that complex signals

can be effectively processed using complex-valued systems. This insight has led to

the development of a novel variation of the CNN model, which utilizes complex-

valued inputs and weights. This approach effectively captures the phase structures of

complex valued signals, making it particularly valuable for tasks where such informa-

tion is crucial, like MRI and remote sensing. However, the techniques developed for

real-valued neural networks seldom translates to the case of complex-valued neural

networks. One particular challenge is in optimizing complex-valued neural network

via back-propogation. The exploration of complex-valued calculus and backpropa-

gation techniques further expands the potential of deep learning, allowing for more

nuanced data interpretation and broader application possibilities.

In this report, we study the following aspects of Complex-valued AI:

• Potential of Complex-valued Neural Networks

• Challenges in Optimizing Complex-valued Neural Networks

• A Comprehensive Mathematical Coverage on Effectively Optimizing Complex-

valued Neural Networks

Finally, we identify other relevant problems pertaining to complex-valued CNN, which

we plan as our future studies.
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Chapter 1

Complex-Valued Neural Networks

Complex-valued neural networks (CVNNs) have emerged as an essential paradigm in

the landscape of computational intelligence and machine learning (Hirose 2009). Un-

like traditional neural networks, which primarily operate on real-valued data, CVNNs

extend this concept to the complex domain, harnessing the potential of complex

numbers in representing and processing information. This transition is not merely a

straightforward extension of well-understood real-valued neural networks but a fun-

damental shift in how neural networks understand and interact with data.

Complex numbers, characterized by their real and imaginary components, provide

a richer framework for representing data. In the realm of CVNNs, this richness

translates into an enhanced ability to capture intricate patterns and relationships in

data that would otherwise be elusive or overly simplified in a real-valued context.

The implications of this are profound, opening up new avenues for solving complex

problems across various scientific and technological domains.

At the heart of CVNNs lies the recognition that many natural and technological

phenomena are inherently complex-valued. From electromagnetic signals to quan-

tum mechanical systems, the complex domain offers a more natural and expressive

language for describing these phenomena. By leveraging this language, CVNNs offer

a more nuanced and effective approach to tasks such as pattern recognition, signal

processing, and complex system modeling.

This report delves into the world of complex-valued neural networks, exploring

their foundational concepts, motivations, and diverse applications. It aims to shed

light on the unique characteristics of CVNNs.
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1.1 Introduction

CVNNs mark a significant departure from traditional neural network architectures.

They are not merely an adaptation of existing networks to handle complex numbers

but represent a fundamentally different approach to neural computation. This section

provides a comprehensive overview of the architecture, operation, and unique aspects

of CVNNs.

In CVNNs, both the neurons and the synaptic weights are complex-valued, allow-

ing the network to process and learn from data represented as complex numbers. This

change necessitates rethinking various aspects of neural network design, from activa-

tion functions to learning algorithms. For instance, the complex nature of the data

requires the use of activation functions that can operate effectively in the complex

domain, such as complex versions of the rectified linear unit (ReLU) or hyperbolic

tangent functions (Lee et al. 2022).

The learning algorithms in CVNNs also undergo significant modifications to ac-

commodate the complex nature of the weights and inputs. Gradient descent, a cor-

nerstone of neural network training, is adapted to handle complex derivatives, often

employing techniques based on Wirtinger calculus.

The implications of these architectural and algorithmic changes are far-reaching.

CVNNs exhibit distinct behaviors and learning dynamics compared to their real-

valued counterparts, often resulting in different patterns of convergence and model

performance. These differences underscore the importance of developing specialized

techniques and methodologies for designing, training, and deploying CVNNs.

As we explore further, the report will highlight the theoretical underpinnings of

optimizing CVNNs, its practical implementations, and the unique challenges and

opportunities they present.

1.2 Motivation for Complex-Valued Signals and

Their Applications

The motivation for exploring and employing complex-valued neural networks (CVNNs)

stems from the inherent nature of complex-valued signals in various scientific and tech-

nological fields. These signals, characterized by their amplitude and phase, provide

2



a more comprehensive understanding of the phenomena they represent. This sec-

tion delves into the specific cases where complex-valued signals are crucial and the

applications that benefit from the advanced processing capabilities of CVNNs.

1.2.1 Synthetic Aperture Radar for Agriculture

Synthetic Aperture Radar (SAR) technology, widely used in remote sensing, signif-

icantly benefits from complex-valued signal processing. SAR (Synthetic Aperture

Radar) is a radar imaging technique that uses the movement of the radar antenna

to synthesize a large aperture. This allows SAR to produce high-resolution images,

regardless of weather conditions or light levels (see Fig. 1.1).

Figure 1.1: Optical vs SAR Imaging for the case of cloudy situation. SAR is able to
capture the information whereas optical imaging struggles (Source: NASA).

In agriculture, SAR is instrumental in monitoring and managing agricultural ac-

tivities. The complex-valued signals in SAR contain vital information about the land

surface, including crop growth, soil moisture, and overall agricultural health.

The phase information in SAR images, often disregarded in traditional analysis,

can provide unique insights into surface structures and vegetation patterns. CVNNs,

with their ability to process and interpret these complex-valued signals, can extract

meaningful information that aids in precision farming, crop yield estimation, and

sustainable land management practices (LIU et al. 2019).
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1.2.2 Magnetic Resonance Imaging for Medicine

Magnetic Resonance Imaging (MRI) is another domain where complex-valued signals

play a pivotal role. MRI technology relies on complex-valued data to generate detailed

images of internal body structures. The challenge in MRI is the reconstruction of

high-quality images from the raw data, which is inherently complex-valued.

Figure 1.2: Condition: Axonal Injury vs Hemorrhage. For each condition, the left
image shows typical MRI (without phase information) and right shows SW-MRI
(which incorporates both magnitude and phase information). Note the condition
evident in SW-MRI expressed by black patches.

Typical MRIs often discard the phase information. Using Susceptibility Weighted

MR phase information is also taken into account. Phase information in such images

is influenced by the magnetic properties of the tissues being imaged. This means

that different tissues or substances within the body, such as veins, hemorrhage ar-

eas, or calcifications, will exhibit distinct signals, sometimes appearing as anti-phase

signals compared to their surroundings (see Fig. 1.2). Anti-phase signals occur when

the phase of the signal is inverted, indicating variations in susceptibility and often

correlating with pathological changes. The MRI images shown compare conditions

of axonal injury and hemorrhage, highlighting how phase information can help dif-

ferentiate between different types of brain injuries and conditions, providing valuable

diagnostic information as shown in Fig. 1.2.

CVNNs may offer a sophisticated approach to MRI image reconstruction. By pro-

cessing the complex-valued MRI data, CVNNs can enhance the clarity and accuracy

of the images, leading to better diagnosis and treatment planning in healthcare. The

ability of CVNNs to preserve and utilize the phase information in MRI data is par-

ticularly beneficial, as it can lead to finer details and contrasts in the reconstructed

images.
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1.2.3 Image Transforms: Fourier Transform

Figure 1.3: Process of Image Restoration using Fourier transform. As natural images
have predominantly low frequency (central part of Fourier spectrum) and noise have
predominantly high frequency, a low pass filtering in frequency domain removes sub-
stantial noise.

Figure 1.3 shows an application where solving in Fourier transformed domain

is easier as compared to that in raw or image domain. Starting with the original

grayscale image of a noisy potrait image, the process moves to a Fast Fourier Trans-

form (FFT), which translates the image into its frequency domain, revealing the

distribution of frequencies as varying intensities in the FFT magnitude representa-

tion. A circular low-pass filter is then applied to the FFT to isolate and remove

high-frequency noise, which is typically spread outside the central region in the fre-

quency domain. Finally, the Inverse FFT (IFFT) reconstitutes the filtered image

back to its spatial domain, resulting in a restored image that ideally has less noise

and clearer features than the original.

In applications such as audio processing, telecommunications, and signal filtering,

the Fourier Transform’s complex-valued output is essential. CVNNs, with their capac-

ity to handle complex-valued data, can effectively process these spectra. This ability

is crucial for tasks like noise reduction, signal enhancement, and feature extraction

in various signal processing applications.
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1.3 Advantages of using complex valued NNs

1.3.1 Orthogonal decision boundaries:

Remark 1: (a) A single complex-valued neuron with n-inputs is equivalent to two

real-valued neurons with 2n-inputs which have a restriction on a set of weight param-

eters. (Nitta 2003)

(b) The decision boundary of a single complex-valued neuron consists of two hyper-

surfaces which intersect orthogonally.(Nitta 2003)

Proof for the case of a single input single neuron (Remark 1(a)).

Proof. Consider a single neuron with a complex weight W = w1+ iw2 and a complex

input a + ib. The output is a complex number c + id. The matrix form of the

transformation is represented as:(
w1 −w2

w2 w1

)(
a
b

)
=

(
c
d

)
This can be interpreted as the multiplication of a complex number W with a

complex input (a+ ib), resulting in a complex output (c+ id).

Let M be the matrix representing the transformation:

M =

(
w1 −w2

w2 w1

)
The magnitude of the complex weight |W | can be represented as

√
w2

1 + w2
2.

Therefore, we can normalize the matrix M to get:

M = |W |

 w1√
w2

1+w2
2

−w2√
w2

1+w2
2

w2√
w2

1+w2
2

w1√
w2

1+w2
2


This normalized matrix can be further expressed in terms of the magnitude |W |

and the arguments (or phase) of W , denoted by arg(W ):

M = |W |
(
cos(arg(W )) − sin(arg(W ))
sin(arg(W )) cos(arg(W ))

)
Matrix M is an orthogonal matrix because it satisfies the property MMT = I,

where MT is the transpose of M , and I is the identity matrix. Orthogonal matrices

have the property that they preserve the inner product, and thus, the transformation

represents a rotation in the complex plane.
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Finally, we illustrate this with the transformation of a vector

(
x1

y1

)
in the com-

plex plane, which is rotated by the matrix M to a new position while preserving its

magnitude. This shows that the decision boundary created by a single neuron with

complex weights is orthogonal.

The complex number c+ id, is:

c = aw1 − bw2,

d = aw2 + bw1.

Let activation function (Step function) ϕ applied to the output can be defined as:

ϕ(x) =

{
1 if x > c1,

0 if x ≤ c1,

where c1 is a threshold value.

The decision boundary in the input space can then be determined by setting the

real part of the neuron’s output equal to the threshold c1:

aw1 − bw2 = c1.

Solving for b in terms of a gives the equation of the decision boundary:

b =
aw1 − c1

w2

.

Given w1, w2 ̸= 0, the slope of the decision boundary is −w1

w2
, which is orthogonal

to the direction of the weight vector in the complex plane.

Proof for the Case of a n-input single neuron (Remark 1(b))

Proof. Consider a single complex-valued neuron with n complex inputs zj = xj + iyj

for j = 1, . . . , n, where i is the imaginary unit, and each zj corresponds to a real

part xj and an imaginary part yj. The neuron’s weight vector is given by complex

numbers wj = wR
j + iwI

j , where wR
j and wI

j are the real and imaginary parts of the

weight associated with input zj. The output of the neuron before activation is a

complex number represented by the dot product of the inputs and weights.
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The real part of the output is given by:

Re

(
n∑

j=1

wjzj

)
=

n∑
j=1

(wR
j xj − wI

jyj),

and the imaginary part of the output is:

Im

(
n∑

j=1

wjzj

)
=

n∑
j=1

(wR
j yj + wI

jxj).

The decision boundary is then determined by the set of points for which the real

part of the output equals a threshold c1, and the imaginary part equals another thresh-

old c2. These conditions can be expressed as two linear equations representing two

hypersurfaces in the 2n-dimensional real space of the inputs (x1, . . . , xn, y1, . . . , yn):

n∑
j=1

(wR
j xj − wI

jyj) = c1, and
n∑

j=1

(wR
j yj + wI

jxj) = c2.

To show that these hypersurfaces intersect orthogonally, consider the gradients of

the two functions defining the decision boundaries. The gradients are normal to the

hypersurfaces and are given by:

∇1 =



∂f
∂x1
...
∂f
∂xn
∂f
∂y1
...
∂f
∂yn


=



wR
1
...

wR
n

−wI
1

...
−wI

n


, ∇2 =



wI
1
...
wI

n

wR
1
...

wR
n


.

The orthogonality of the hypersurfaces can be verified by showing that the dot

product of the gradients is zero:

⟨∇1,∇2⟩ =
n∑

j=1

wR
j w

I
j − wI

jw
R
j = 0.

This dot product is zero, implying that the gradients, and thus the decision bound-

aries, are orthogonal. Therefore, a single complex-valued neuron with n inputs creates

decision boundaries that consist of two orthogonal hypersurfaces in the real 2.
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1.3.2 Complex Activation Functions

Real-valued non-linear activations are incapable of maintaining the magnitude and

phase information of complex-valued inputs. This inability highlights the need for

complex-valued activations in neural networks, particularly to preserve the intricate

relationships embedded in complex data’s magnitude and phase(Mahesh Mohan M R

2023). Such complex activations are essential for accurately handling and interpreting

the characteristics of complex-valued inputs.

1.3.3 Robustness to Noise

Complex-valued neural networks (CV-CNNs) are robust to noise and data distor-

tions, a key advantage in processing real-world data. Their ability to handle complex

representations allows them to discern and filter out irrelevant fluctuations in the

data more effectively(Chakraborty et al. 2019). This feature is particularly valu-

able in applications where signal integrity is crucial, such as in medical imaging or

telecommunications. By maintaining the integrity of the underlying data structure,

CV-CNNs can deliver more accurate and reliable outputs, even in challenging noisy

environments.
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Chapter 2

Optimizing Complex-valued NNs:
Challenges and Solution

2.1 Complex Calculus - Preliminaries

In complex function theory, we use z = x+ iy for complex numbers, where z ∈ C and

x, y ∈ R. Complex functions are denoted as f : C → C, with f(z) = u(x, y)+ iv(x, y)

and u, v : R → R.
It’s important to note that the complex field C cannot be ordered in a meaningful

way, which affects the nature of the loss function in optimization, requiring it to be

real-valued. This section emphasizes the role of differentiability in complex functions,

crucial for optimization processes.

Definition 1. A complex function f is differentiable (in complex domain) at z, with

the derivative f ′(z), if the following limit exists

f ′(z) = lim
h→0

f(z + h)− f(z)

h

A function that is differentiable everywhere is called entire.

Definition 2. A complex function f is differentiable at point z if and only if u and

v are differentiable, and the Cauchy Riemann equations hold at z:

∂u

∂x
=

∂v

∂y

∂u

∂y
= −∂v

∂x

10



2.2 Challenges in Optimizing Complex Valued NNs

• Complex functions need to be holomorphic (analytic) and complex differentiable

for gradient to exist, but many complex functions are not analytic.

• Issues using complex loss function:

– If the complex loss function f is analytic and bounded everywhere, it is

constant as implied by Liouville’s Theorem.

– Also, if the loss function is complex, there is no notion of orderedness in

the complex loss function.

• If the loss function f is real-valued and analytic everywhere (i.e., v = 0), the

Cauchy-Riemann (CR) equations simplify to ∂u
∂x

= ∂u
∂y

= 0, implying that if f

must be constant.

• Solution: Wirtinger derivatives provide an alternative approach to complex

derivatives.

2.3 Wirtinger Calculus

In this part, we discuss about Wirtinger derivatives. We start by defining how these

derivatives work with the complex variable z and its conjugate z∗:

It’s important to know that if a function f doesn’t meet certain conditions called

the Cauchy-Riemann conditions or their conjugate forms, we can’t use complex deriva-

tives for it. This means we can’t describe the function only using h or h∗, like we can

with some other functions. But, if f can be differentiated the normal way (this means

u and v can be partially differentiated), then we can still expand it into a series like

Taylor’s series, using u and v.

Proof. Consider the first order Taylor expansions of u and v at c = c1 + ic2 = (c1, c2)

u(c+ h) = u(c) +
∂u

∂x
(c)h1 +

∂u

∂y
(c)h2 + o(|h|),

v(c+ h) = v(c) +
∂v

∂x
(c)h1 +

∂v

∂y
(c)h2 + o(|h|).

11



Multiplying the second equation by i and adding to the first one, we get:

f(c+ h) = f(c) +

(
∂u

∂x
(c) + i

∂v

∂x
(c)

)
h1 +

(
∂u

∂y
(c) + i

∂v

∂y
(c)

)
h2 + o(|h|).

we introduce ∂
∂x

and ∂
∂y

operators where

∂f

∂x
(c) =

∂u

∂x
(c) + i

∂v

∂x
(c) and

∂f

∂y
(c) =

∂u

∂y
(c) + i

∂v

∂y
(c)

and obtain:

f(c+ h) = f(c) +
∂f

∂x
(c)h1 +

∂f

∂y
(c)h2 + o(|h|).

Next, we substitute h1 and h2 using the relations h1 =
h+h∗

2
and h2 =

h−h∗

2i
.

f(c+ h) = f(c) +
1

2

(
∂f

∂x
(c) +

1

i

∂f

∂y
(c)

)
h+

1

2

(
∂f

∂x
(c)− 1

i

∂f

∂y
(c)

)
h∗ + o(|h|)

= f(c) +
1

2

(
∂f

∂x
(c)− i

∂f

∂y
(c)

)
h+

1

2

(
∂f

∂x
(c) + i

∂f

∂y
(c)

)
h∗ + o(|h|).

It will be shown this equation is essential for the development of Wirtinger’s

calculus.

f(c+ h) = f(c) +
1

2

(
∂f

∂z
(c)− i

∂f

∂z∗
(c)

)
h+

1

2

(
∂f

∂z
(c) + i

∂f

∂z∗
(c)

)
h∗ + o(|h|). (2.1)

We define the Wirtinger’s derivative (or W-derivative for short) of f at c as follows

∂f

∂z
(c) =

1

2

(
∂

∂x
(c)− i

∂

∂y
(c)

)
=

1

2

(
∂u

∂x
(c) +

∂v

∂y
(c)

)
+

i

2

(
∂v

∂x
(c)− ∂u

∂y
(c)

)
.

Consequently, the conjugate Wirtinger’s derivative (or CW-derivative for short)

of f at c is defined by:

∂f

∂z∗
(c) =

1

2

(
∂f

∂x
(c) + i

∂f

∂y
(c)

)
=

1

2

(
∂u

∂x
(c)− ∂v

∂y
(c)

)
+

i

2

(
∂v

∂x
(c) +

∂u

∂y
(c)

)
.

Note that both the W-derivative and the CW-derivative exist, if f is differentiable

in the real sense. In view of these new definitions, equation may now be recasted as

follows

f(c+ h) = f(c) +
∂f

∂z
(c)h+

∂f

∂z∗
(c)h∗ + o(|h|).
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Definition 3. The Wirtinger derivatives operators are

∂

∂z
:=

1

2

(
∂

∂x
− i

∂

∂y

)
∂

∂z∗
:=

1

2

(
∂

∂x
+ i

∂

∂y

)
The Wirtinger derivatives have some desirable properties. For one, z, z∗ are inde-

pendent variables as
∂z

∂z∗
=

∂z∗

∂z
= 0

Also, some dual connections with the conjugate hold for the derivatives as well,(
∂f ∗

∂z

)
=

(
∂f

∂z∗

)∗

,

(
∂f

∂z

)
=

(
∂f ∗

∂z∗

)∗

Using the Wirtinger derivatives, we can express the total differential of any com-

plex valued function f .

Remark 1. The differential df of a complex-valued function f(z) : A → C with

A ⊆ C can be expressed as

df =
∂f

∂z
dz +

∂f

∂z∗
dz∗

Proof. Consider the bivariate functions F : R2 → C and u, v : R2 → R associated to

f(z) by

∀z = x+ iy, F (x, y) = u(x, y) + iv(x, y) = f(z)

The total differential of F is given by

dF =
∂F

∂x
dx+

∂F

∂y
dy =

∂u

∂x
dx+

∂v

∂x
dy + i

(
∂u

∂y
dy +

∂v

∂y
dy

)

By using the differentials defined above, we can write

dx =
1

2
(dz + dz∗), dy =

1

2i
(dz − dz∗)

Obtaining

dF =
1

2

[(
∂u

∂x
+ i

∂v

∂x

)
+ i

(
∂u

∂y
− i

∂v

∂y

)]
dz+

1

2

[(
∂u

∂x
+ i

∂v

∂x

)
− i

(
∂u

∂y
− i

∂v

∂y

)]
dz∗
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=
∂f

∂z
dz +

∂f

∂z∗
dz∗

2.4 Wirtinger derivative properties

Remark 2. Let f = u + iv be a complex function differentiable at a point c. Then,

the following relation holds: (
∂f

∂z

)∗

=
∂f ∗

∂z∗
. (2.2)

Proof. Consider the complex conjugate of the Wirtinger derivative of f at c, given f

is differentiable at this point. We have:

L.H.S =

(
∂f

∂z

)∗

=
1

2

(
∂u

∂x
+

∂v

∂y
− i

(
∂v

∂x
− ∂u

∂y

))∗

=
1

2

(
∂u

∂x
− ∂v

∂y
+ i

(
∂v

∂x
+

∂u

∂y

))
=

∂f ∗

∂z∗

= RHS.

This proves the stated relationship between the conjugate of the Wirtinger derivative

and the Wirtinger derivative of the conjugated function.

Remark 3. For a complex function f = u + iv differentiable at a point c, it holds

that: (
∂f

∂z∗

)∗

=
∂f ∗

∂z
. (2.3)

Proof. Following a similar approach as before, the complex conjugate of the conjugate

Wirtinger derivative is:

LHS =

(
∂f

∂z∗

)∗

=
1

2

(
∂u

∂x
− ∂v

∂y
+ i

(
∂v

∂x
+

∂u

∂y

))∗

=
1

2

(
∂u

∂x
+

∂v

∂y
− i

(
∂u

∂y
− ∂v

∂x

))
=

∂f ∗

∂z
= RHS.
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This completes the proof, showing symmetry in Wirtinger derivatives under complex

conjugation.

Remark 4. Linearity Property of Wirtinger Derivatives:

Given two complex functions f(z) and g(z), and any two complex constants a and b,

the linearity property of Wirtinger derivatives is expressed as:

1. For the derivative with respect to z:

∂

∂z
(af(z) + bg(z)) = a

∂f

∂z
+ b

∂g

∂z

2. For the derivative with respect to z∗:

∂

∂z∗
(af(z) + bg(z)) = a

∂f

∂z∗
+ b

∂g

∂z∗

Proof. First, we prove the linearity of the partial derivatives with respect to x and y:

1. Linearity of ∂
∂x

and ∂
∂y
: By the fundamental properties of differentiation, for

any functions f and g, and constants a and b, we have:

∂

∂x
(af + bg) = a

∂f

∂x
+ b

∂g

∂x
,

∂

∂y
(af + bg) = a

∂f

∂y
+ b

∂g

∂y
.

These equations follow directly from the distributive property of differentiation over

addition and scalar multiplication.

Now, applying this to the Wirtinger derivatives:

2. For the derivative with respect to z:

∂

∂z
(af(z) + bg(z)) =

1

2

(
∂

∂x
− i

∂

∂y

)
(af + bg)

=
1

2

(
a
∂f

∂x
+ b

∂g

∂x
− i

(
a
∂f

∂y
+ b

∂g

∂y

))
= a

1

2

(
∂f

∂x
− i

∂f

∂y

)
+ b

1

2

(
∂g

∂x
− i

∂g

∂y

)
= a

∂f

∂z
+ b

∂g

∂z
.
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3. For the derivative with respect to z∗:

∂

∂z∗
(af(z) + bg(z)) =

1

2

(
∂

∂x
+ i

∂

∂y

)
(af + bg)

=
1

2

(
a
∂f

∂x
+ b

∂g

∂x
+ i

(
a
∂f

∂y
+ b

∂g

∂y

))
= a

1

2

(
∂f

∂x
+ i

∂f

∂y

)
+ b

1

2

(
∂g

∂x
+ i

∂g

∂y

)
= a

∂f

∂z∗
+ b

∂g

∂z∗
.

Thus, the linearity of Wirtinger derivatives with respect to both z and z∗ is proven.

Remark 5. Product Rule:

If f, g are differentiable in the real sense at c, then

∂(f · g)
∂z

(c) =
∂f

∂z
(c)g(c) + f(c)

∂g

∂z
(c),

∂(f · g)
∂z∗

(c) =
∂f

∂z∗
(c)g(c) + f(c)

∂g

∂z∗
(c).

Proof. Given two functions f(z) = uf + ivf and g(z) = ug + ivg, which are differen-

tiable at c.

1. We will prove the product rule for Wirtinger derivatives in two steps, starting

with the partial derivatives with respect to x and y, and then extend this to the

Wirtinger derivatives.

For the partial derivatives with respect to x and y, the product rule states that:

∂(f · g)
∂x

=
∂f

∂x
· g + f · ∂g

∂x
,

∂(f · g)
∂y

=
∂f

∂y
· g + f · ∂g

∂y
.

Suppose f = uf + ivf and g = ug + ivg are complex-valued functions of a complex

variable z, where uf , vf , ug, and vg are real-valued functions of two real variables x

and y. The product f · g is:

f · g = (ufug − vfvg) + i(ufvg + vfug).

The partial derivative of f · g with respect to x is given by:
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∂

∂x
(f · g) = ∂

∂x
(ufug − vfvg) + i

∂

∂x
(ufvg + vfug).

We want to show that:

∂

∂x
(f · g) =

(
∂f

∂x

)
· g + f ·

(
∂g

∂x

)
.

Starting with the left-hand side (LHS):

LHS =
∂

∂x
((uf + ivf )(ug + ivg))

=
∂

∂x
(ufug − vfvg + i(ufvg + vfug))

=
∂

∂x
(ufug)−

∂

∂x
(vfvg) + i

(
∂

∂x
(ufvg) +

∂

∂x
(vfug)

)
=

(
∂uf

∂x
ug + uf

∂ug

∂x

)
−
(
∂vf
∂x

vg + vf
∂vg
∂x

)
+ i

((
∂uf

∂x
vg + uf

∂vg
∂x

)
+

(
∂vf
∂x

ug + vf
∂ug

∂x

))
=

(
∂uf

∂x
+ i

∂vf
∂x

)
· (ug + ivg) + (uf + ivf ) ·

(
∂ug

∂x
+ i

∂vg
∂x

)
=

(
∂f

∂x

)
· g + f ·

(
∂g

∂x

)
.

Similarly we prove product rule with respect to y.

∂

∂y
(f · g) =

(
∂f

∂y

)
g + f

(
∂g

∂y

)
.

2. Now, we apply this to the Wirtinger derivatives: For the derivative with respect

to z:

∂

∂z
(f · g) = 1

2

(
∂

∂x
− i

∂

∂y

)
(f · g)

=
1

2

(
∂f

∂x
g + f

∂g

∂x
− i

(
∂f

∂y
g + f

∂g

∂y

))
=

∂f

∂z
g + f

∂g

∂z
.
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3. For the derivative with respect to z∗:

∂

∂z∗
(f · g) = 1

2

(
∂

∂x
+ i

∂

∂y

)
(f · g)

=
1

2

(
∂f

∂x
g + f

∂g

∂x
+ i

(
∂f

∂y
g + f

∂g

∂y

))
=

∂f

∂z∗
g + f

∂g

∂z∗
.

This completes the proof for product the Wirtinger derivative w.r.t to z and z∗.

Remark 6. If f is differentiable in c and f(c) ̸= 0, then

∂
(

1
f

)
∂z

(c) = −
∂f
∂z
(c)

f 2(c)
,

∂
(

1
f

)
∂z∗

(c) = −
∂f
∂z∗

(c)

f 2(c)
.

Proof. Let f(z) = u(x, y)+iv(x, y) be a complex-valued function that is differentiable

with respect to x and y, and f(z) ̸= 0 at the point of interest. The reciprocal of f is

given by 1
f
. We want to find the derivative of 1

f
with respect to x.

The reciprocal can be expressed as:

1

f
=

1

u+ iv
=

u− iv

u2 + v2
=

u

u2 + v2
− i

v

u2 + v2

The left-hand side (LHS) is given by the derivative of 1
f
with respect to x:

LHS =
∂

∂x

(
u

u2 + v2

)
+ i

∂

∂x

(
v

u2 + v2

)
Using the quotient rule for the real and imaginary parts separately, we get:

∂

∂x

(
u

u2 + v2

)
=

(u2 + v2)∂u
∂x

− u(2u∂u
∂x

+ 2v ∂v
∂x
)

(u2 + v2)2

∂

∂x

(
v

u2 + v2

)
=

(u2 + v2) ∂v
∂x

− v(2u∂u
∂x

+ 2v ∂v
∂x
)

(u2 + v2)2

LHS =
(u2 + v2)∂u

∂x
− u(2u∂u

∂x
+ 2v ∂v

∂x
)

(u2 + v2)2
+ i

(u2 + v2) ∂v
∂x

− v(2u∂u
∂x

+ 2v ∂v
∂x
)

(u2 + v2)2
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LHS =
−(u2 − v2)∂u

∂x

(u2 + v2)2
−

2uv ∂v
∂x

(u2 + v2)2
+ i

(
(u2 − v2) ∂v

∂x

(u2 + v2)2
−

2uv ∂u
∂x

(u2 + v2)2

)
Now, for the right-hand side (RHS):

RHS = − 1

(u+ iv)2

(
∂u

∂x
+ i

∂v

∂x

)
We multiply the numerator and the denominator by the conjugate of (u+ iv)2 to

rationalize the denominator:

RHS = −
(
∂u
∂x

+ i ∂v
∂x

)
(u− iv)2

(u2 + v2)2

Expanding the RHS:

RHS = −
(
∂u
∂x
u2 − ∂u

∂x
v2 − 2iuv ∂u

∂x

)
+ i
(
∂v
∂x
u2 − ∂v

∂x
v2 + 2uv ∂v

∂x

)
(u2 + v2)2

Combining like terms:

RHS = −
(
u2 ∂u

∂x
− v2 ∂u

∂x
− u2 ∂v

∂x
+ v2 ∂v

∂x

)
+ i
(
2uv ∂v

∂x
− 2uv ∂u

∂x

)
(u2 + v2)2

Simplifying further:

RHS = −
(
u2 ∂u

∂x
− v2 ∂u

∂x

)
− i
(
u2 ∂v

∂x
− v2 ∂v

∂x

)
(u2 + v2)2

+ i
2uv

(
∂v
∂x

− ∂u
∂x

)
(u2 + v2)2

= −
(
(u2 − v2)∂u

∂x

)
− i
(
(u2 − v2) ∂v

∂x

)
(u2 + v2)2

+
2uv

(
∂v
∂x

− i∂u
∂x

)
(u2 + v2)2

Now, comparing the real parts and the imaginary parts of the LHS and RHS, we

can see that they are equivalent:

∂

∂x

(
1

f

)
= −

∂f
∂x

f 2

This proves that the LHS is equal to the RHS.

Now using the results:
∂

∂x

(
1

f

)
= −

∂f
∂x

f 2
,

∂

∂y

(
1

f

)
= −

∂f
∂y

f 2
,
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We can derive the Wirtinger derivatives of 1
f
:

∂
(

1
f

)
∂z

=
1

2

(
∂

∂x

(
1

f

)
− i

∂

∂y

(
1

f

))
=

1

2

(
−

∂f
∂x

f 2
+ i

∂f
∂y

f 2

)

= − 1

2f 2

(
∂f

∂x
− i

∂f

∂y

)
= −

∂f
∂z

f 2
,

and similarly for the conjugate Wirtinger derivative:

∂
(

1
f

)
∂z∗

=
1

2

(
∂

∂x

(
1

f

)
+ i

∂

∂y

(
1

f

))
=

1

2

(
−

∂f
∂x

f 2
− i

∂f
∂y

f 2

)

= − 1

2f 2

(
∂f

∂x
+ i

∂f

∂y

)
= −

∂f
∂z∗

f 2
.

This completes the proof that the Wirtinger derivatives of 1
f
with respect to z and

z∗ are equal to the negative of the derivatives of f with respect to z and z∗, divided

by the square of f .

Remark 7. Division Rule:

If f, g are differentiable i.e uf , ug, vf , vg are differentiable at c and g(c) ̸= 0, then

∂
(

f
g

)
∂z

(c) =
∂f
∂z
(c)g(c)− f(c)∂g

∂z
(c)

g2(c)
,

∂
(

f
g

)
∂z

(c) =
∂f
∂z∗

(c)g(c)− f(c) ∂g
∂z∗

(c)

g2(c)
.
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Proof. From the reciprocal rule (Remark 6) and the Product rule (Remark 5), we get(
f(c)
g(c)

= f(c) · 1
g(c)

)
.

Remark 8. Chain Rule

If f, g are differentiable in the real sense i.e uf , ug, vf , vg are differentiable at c

and g(c) ̸= 0, then

∂g ◦ f
∂z

(c) =
∂g

∂z
(f(c))

∂f

∂z
(c) +

∂g

∂z∗
(f(c))

∂f ∗

∂z
(c),

∂g ◦ f
∂z∗

(c) =
∂g

∂z
(f(c))

∂f

∂z∗
(c) +

∂g

∂z∗
(f(c))

∂f ∗

∂z∗
(c).

Proof. Given, f : C 7→ C and g : C 7→ C, we would like to obtain identities for ∂(f◦g)
dz

and ∂(f◦g)
dz∗

. Let’s write the total differential for g(z) :

dg =
∂g

∂z
dz +

∂g

∂z∗
dz∗

Then the total differential for g∗(z) :

dg∗ =
∂g∗

∂z
dz +

∂g∗

∂z∗
dz∗

Let’s write the total differential for f(g) :

d(f ◦ g) = ∂f

∂g
dg +

∂f

∂g∗
dg∗

Put dg and dg∗ in to the equation:

d(f ◦ g) =
(
∂f

dg

∂g

dz
+

∂f

dg∗
∂g∗

dz

)
dz +

(
∂f

dg

∂g

dz∗
+

∂f

dg∗
∂g∗

dz∗

)
dz∗

So, these are the chain rules and they are exactly same with the one we know for

real functions! (as thinking f(g, g∗), g(z, z∗) are real multi-variable functions)

∂(f ◦ g)
dz

=
∂f

dg

∂g

dz
+

∂f

dg∗
∂g∗

dz

∂(f ◦ g)
dz∗

=
∂f

dg

∂g

dz∗
+

∂f

dg∗
∂g∗

dz∗
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2.5 Multivariate Wirtinger derivative

Definition 4. Consider a complex function f that takes n complex variables z1, z2, . . . , zn

and maps them to a complex number. The variables zj can be expressed in terms of

their real and imaginary parts: zj = xj + iyj. The total derivative of f is:

df = f(z1 + h1, z2 + h2, . . . , zn + hn)− f(z1, z2, . . . , zn) (2.4)

Let u(x1, y1, . . . , xn, yn) and v(x1, y1, . . . , xn, yn) represent the real and imaginary

parts of f , respectively. Then, we can express the total derivative as:

du = u(x1 + a1, y1 + b1, . . .)− u(x1, y1, . . .),

dv = v(x1 + a1, y1 + b1, . . .)− v(x1, y1, . . .),
(2.5)

where aj and bj are infinitesimal increments in the real and imaginary parts of zj,

respectively.

The change in f , denoted by df , can thus be written as:

df =
n∑

j=1

(
∂u

∂xj

+ i
∂v

∂xj

)
aj +

(
∂u

∂yj
+ i

∂v

∂yj

)
bj (2.6)

We can simplify this further by defining the Multivariate Wirtinger derivatives:

∂f

∂zj
:=

1

2

(
∂u

∂xj

− i
∂v

∂xj

)
,

∂f

∂z̄j
:=

1

2

(
∂u

∂yj
+ i

∂v

∂yj

)
(2.7)

Using these Wirtinger derivatives, we can express the total derivative as:

df =
n∑

j=1

(
∂f

∂zj
hj +

∂f

∂zj∗
hj

∗
)

(2.8)

where hj = aj + ibj and hj
∗ is its complex conjugate.

This form shows that the total derivative of a multivariate complex function can

be decomposed into a sum of derivatives with respect to each complex variable and its

conjugate.

For the given function f , the total derivative with respect to the complex variables

z is then:
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df =
n∑

j=1

(
∂f

∂zj
dzj +

∂f

∂zj∗
dzj

∗
)

(2.9)

where dzj = dxj + idyj and dz̄j = dxj − idyj.

Remark 9. Multivariate Chain rule

If f, g are differentiable in the real sense i.e uf , ug, vf , vg are differentiable at c and

g(c) ̸= 0, then the following equations hold at z = (z1, z2, ..., zn) = (c1, c2, ..., cn) = c

∂

∂zi
(f ◦ g) =

n∑
j=1

(
∂f

∂gj

∂gj
∂zi

+
∂f

∂z∗j

∂g∗j
∂zi

)
∂

∂z∗i
(f ◦ g) =

n∑
j=1

(
∂f

∂gj

∂gj
∂z∗i

+
∂f

∂z∗j

∂g∗j
∂z∗i

)
Proof. To prove the first equation, we take the total differential of f in terms of z

and z∗:

df =
n∑

j=1

∂f

∂zj
dzj +

∂f

∂z∗j
dz∗j .

Let’s introduce this notation to make things simpler:

dgj =
∂gj
∂zi

dzi +
∂gj
∂z∗i

dz∗i , dz∗j =
∂g∗j
∂zi

dzi +
∂g∗j
∂z∗i

dz∗i .

Total derivative for gj(z) and g∗j (z):

dg =
n∑

i=1

dgi.

dg∗ =
n∑

i=1

dg∗i

Substituting dzi and dz∗i into the total differential df , and then collecting terms

involving dzi and dz∗i , we get:
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d(f ◦ g) =
n∑

j=1

∂f

∂gj
(dgj) +

∂f

∂g∗j
(dg∗j ),

=
n∑

j=1

n∑
i=1

∂f

∂gj

(
∂gj
∂zi

dzi +
∂gj
∂z∗j

dz∗j

)
+

∂f

∂g∗j

(
∂g∗j
∂zi

dzi +
∂g∗j
∂z∗i

dz∗i

)
,

=
n∑

j=1

(
∂f

∂gj

∂gj
∂zi

+
∂f

∂z∗j

∂g∗j
∂zi

)
dzi +

n∑
j=1

(
∂f

∂gj

∂gj
∂z∗i

+
∂f

∂z∗j

∂g∗j
∂z∗i

)
dz∗i .

Since ∂
∂zi

(f ◦ g) is the coefficient of dzi in the total differential df , and ∂
∂z∗i

(f ◦ g)
is the coefficient of dz∗i , we obtain the desired formulas.

Analogy with Real valued Chain Rule

Consider the following computational graph in neural network: A simple neural net-

work can be visualized as follows, where z1, z2, . . . , zn are inputs, g1, g2, . . . , g4 repre-

sent the first layer values, and f is the output layer value:

x1

x2

x3

x4

g1

g2

g3

g4

f

layer 2layer 1
output
layer

Consider a computation graph where each node represents a real-valued function.

Let f : Rn → R be the output function and g : Rn → Rn be an intermediate function

producing a vector of values from a input vectorx. Here, g(x) = (g1(x), . . . , gn(x))

and the final output f is computed as f(g(x)).

The derivative of f with respect to the input x, when f is composed with g, is a

sum of partial derivatives of f with respect to its inputs (given by the functions gi)

times the derivatives of these inputs with respect to x. Mathematically, this can be

expressed as follows:
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h′(x) =
d

dx
f(g(x)) =

n∑
i=1

∂f

∂gi

dgi
dx

(2.10)

This expression is a direct application of the multivariate chain rule. Each term
dgi
dx

represents how the intermediate variable changes with a change in x, while ∂f
∂gi

captures how the output of the function f changes with a change in the intermediate

variable gi.

Equivalent Computational Graph for complex variables

In this network, we consider both z1, z2, . . . , zn and their conjugates z∗1 , z
∗
2 , . . . , z

∗
n as in-

puts. The hidden layer consists of both g1, g2, g3, g4 and their conjugates g∗1, g
∗
2, g

∗
3, g

∗
4,

totaling 8 nodes. The output layer value is f.

Treating f(g1, g
∗
1 . . .), g(z, z

∗) are real multi-variable functions, we get the following

computational graph.

z1

z∗1

z2

z∗2

z3

z∗3

z4

z∗4

g1

g∗1

g2

g∗2

g3

g∗3

g4

g∗4

f

When we apply the chain rule to this complex system, we look at how a small

change in zi and z∗i propagates through the network to affect f . We must consider

how these changes affect f through all possible paths, which include the effects on gj

and g∗j , and then the effect of these on f .
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For example, the derivative of f with respect to zi, gradients flowing through gj

would have terms:
∂f

∂gj

∂gj
∂zi

+
∂f

∂g∗j

∂g∗j
∂zi

(2.11)

and similarly for the derivative with respect to z∗i .

So, considering gradients through all gj

∂

∂zi
(f ◦ g) =

n∑
j=1

(
∂f

∂gj

∂gj
∂zi

+
∂f

∂z∗j

∂g∗j
∂zi

)

2.6 Optimizing single variable complex valued CNN

Remark 10. Given a real-valued function f on the complex plane at point z, the

direction of steepest ascent is parallel to the complex conjugate of the gradient of f .

Formally, the differential increment for the steepest ascent is given by:

dz =
∂f

∂z∗
ds

where ds is an infinitesimal step in the real domain. Consequently, the steepest descent

is in the direction opposite to this, which is:

− ∂f

∂z∗

Proof. If f is a real-valued function on C, the first-order Taylor expansion at a point

z is:

f(z + h) = f(z) +
∂f

∂z
(z)h+

∂f

∂z∗
(z)h∗ + o(|h|).

We can also express this expansion in terms of the real part of the product involving

h:

f(z + h) = f(z) + 2ℜ
[
∂f

∂z
(z)h

]
+ o(|h|).

Using the Cauchy-Riemann conditions and their consequence, the magnitude of this

real part is bounded by:

ℜ
[
∂f

∂z
(z)h

]
≤ |h|

∣∣∣∣ ∂f∂z∗ (z)
∣∣∣∣ .

The maximum increase of f , signifying the steepest ascent, occurs when h aligns with

the direction of ∂f
∂z∗

, while the steepest descent is achieved in the opposite direction,

given by:

− ∂f

∂z∗
.
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Thus, an iterative scheme to minimize f(z), such as in gradient descent algorithms,

will update the position z according to:

zn = zn−1 − µ

(
∂f

∂z∗

)
zn−1

,

where µ is the learning rate.

2.7 Optimizing multi-variable complex valued func-

tion

Consider a multivariate complex function f : Cn → R and let Z = (z1, z2, . . . , zn)

be a point in the domain of f , where each zj is a complex variable. The directional

derivative of f at Z in the direction of a complex vector h = (h1, h2, . . . , hn) is given

by:

df =
n∑

j=1

(
∂f

∂zj
hj +

∂f

∂zj∗
hj

∗
)
. (2.12)

Since f is a real valued loss function, it must hold that:

df = 2Re

(
n∑

j=1

∂f

∂zj
hj

)
. (2.13)

The steepest ascent direction is the direction in which this derivative is maximized.

Since f is real, the steepest ascent direction is obtained. The maximization of the

directional derivative is equivalent to maximizing the real part of the inner product

between the gradient vector and the direction vector h.

We define the gradient of f at Z with respect to the complex variables as∇f(Z) =(
∂f
∂z1

, . . . , ∂f
∂zn

)
, and its conjugate transpose as ∇f(Z)∗ =

(
∂f
∂z1∗

, . . . , ∂f
∂zn∗

)T
.

The steepest ascent direction at Z is then the direction of ∇f(Z). To move in the

direction of steepest ascent, we update Z as follows:

Zi+1 = Zi + λ∇f(Zi)
∗ (2.14)

where λ is a positive scalar that determines the step size.

In conclusion, the direction of steepest ascent for a real-valued function of complex

variables is given by the gradient with respect to those variables λ.
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So, for the steepest descent, the direction is −∇f(Zi)
∗. We do gradient descent

as follows:

Zi+1 = Zi − λ∇f(Zi)
∗ (2.15)

2.8 Simple Experiments comparing with RV CNNs

2.9 Conclusion

In this report, we have conducted a systematic study of optimizing complex-valued

CNNs. We concluded that normal complex valued differentiation (or analyticity)

cannot be used for optimizing complex-valued neural networks; instead, we need to

consider a different calculus called Wirtinger calculus. We have derived useful proper-

ties of the Wirtinger calculus that is needed for back-propogation. The expressiveness

of Wirtinger derivatives are wonderful. Every property with Wirtinger derivatives

becomes same as that one learned in real calculus.
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Chapter 3

Future Works

3.1 Extended Optimizers for CV-CNNs

Complex-valued convolutional neural networks (CV-CNNs) present unique challenges

and opportunities for optimization algorithms. Traditional optimizers like Adam and

AdaGrad have been primarily designed and tuned for real-valued neural networks.

Adapting and extending these optimizers for CV-CNNs could lead to significant im-

provements in training efficiency and model performance. This involves:

• Developing complex-valued versions of gradient estimators and moment calcu-

lations.

• Adjusting learning rate schedules and other hyperparameters to accommodate

the properties of complex numbers.

• Investigating the effects of complex-valued batch statistics on the optimization

process.

Such advancements would not only enhance the training of CV-CNNs but also deepen

our understanding of complex-valued optimization landscapes.

3.2 Batch Normalization for CV-CNNs

Batch normalization has been a pivotal technique in stabilizing and accelerating the

training of real-valued neural networks. However, its direct application to complex-

valued networks is not straightforward due to the intrinsic properties of complex

numbers. Future research in this area could include:

29



• Exploring novel ways to normalize complex-valued activations, taking into ac-

count the interactions between their real and imaginary components.

• Investigating the effects of different normalization schemes on the phase and

amplitude aspects of complex-valued feature maps.

• Developing normalization techniques that respect the topological and algebraic

structure of the complex number space.

Such developments in batch normalization for CV-CNNs would be crucial for harness-

ing the full potential of complex-valued representations in deep learning architectures.

3.3 Initialization Strategies for CV-CNNs

Proper initialization of neural network weights is crucial to ensure efficient training

and convergence. For CV-CNNs, this aspect becomes even more critical due to the

complex nature of the parameters. Future research directions might include:

• Developing initialization methods that account for the phase and magnitude

dynamics in complex-valued weights.

• Exploring the effects of different initialization schemes on the learning trajectory

and stability of CV-CNNs.

• Examining the interplay between weight initialization and complex-valued ac-

tivation functions.

• Investigating symmetry-breaking in initialization to avoid stagnation in subop-

timal solutions peculiar to complex-valued optimization landscapes.

Advancements in initialization strategies for CV-CNNs will be instrumental in fully

leveraging the capabilities of complex numbers in deep learning models.
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