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Introduction

◀ Convolutional Neural Networks (CNNs): Existing literature in
computer vision typically focus on real-valued data.

◀ Merits of Complex-Valued Signals: Having diverse applications in SAR,
MRI, and meteorology.

◀ Novel CNN Variation: Introduction of CNNs utilizing complex-valued
inputs and weights, enhancing phase capture in images.

◀ Challenges and Exploration: Adapting optimization techniques, like
backpropagation, for complex-valued neural networks.
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Motivation

◀ Noise Reduction via FFT:
Starting with a noisy image, FFT translates it into frequency domain.
A circular low-pass filter removes high-frequency noise, and Inverse FFT
restores the image with reduced noise and enhanced clarity.

Figure 1: Process of Image Restoration using Fourier transform
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Orthogonal Decision Boundaries

◀ Complex-valued neurons create decision boundaries consisting of two
intersecting hypersurfaces at orthogonal angles, enhancing classification
capabilities.

◀ Single complex-valued neuron with n-inputs is equivalent to two
real-valued neurons with 2n-inputs which have a restriction on a set of
weight parameters.

◀ For a single neuron with a single input,complex weight W = w1 + iw2.
Let M be the matrix representing the transformation:

M =

(
w1 −w2

w2 w1

)
= |W |

(
cos(arg(W )) − sin(arg(W ))
sin(arg(W )) cos(arg(W ))

)
◀ This orthogonality improves generalization. Example, several problems

like XOR that cannot be solved with a single real neuron, can be solved
with a single complex-valued neuron using the orthogonal property.

4 / 18



Introduction Motivation Potential of Complex-valued Neural Networks Wirtinger Derivative Optimizing Loss Functions

Other Advantages of using CVNNs

◀ Complex Activation Functions: Real-valued non-linear activations
cannot maintain the magnitude and phase information of complex-valued
inputs. Complex-valued activations in CVNNs preserve the intricate
relationships embedded in complex data’s magnitude and phase 1.

◀ Enhanced Information Encoding: Complex numbers allow for the
encoding of more information in the same number of parameters.

◀ Robustness to Noise: Their ability to handle complex representations
allows them to effectively discard and filter out irrelevant fluctuations,
leading to more accurate and reliable outputs in noisy environments.

1
ON COMPLEX-DOMAIN CNN REPRESENTATIONS FOR CLASSIFYING REAL/COMPLEX-VALUED

DATA Mahesh Mohan M R, K Srivastava, N Ahuja, 2023 (under review)
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Complex Calculus Preliminaries

Definition

A complex function f is complex differentiable at z, if the following limit exists

f ′(z) = lim
h→0

f(z + h)− f(z)

h
.

Definition

A complex function f is complex differentiable at point z iff u, v are
differentiable (as real functions) , and the Cauchy-Riemann equations hold at z:

∂u

∂x
=

∂v

∂y

∂u

∂y
= −∂v

∂x
.

Definition

Liouville’s Theorem:
If f(z) is an analytic function for all finite values of z and is bounded for all
values of z in C, then f is a constant function.
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Challenges in optimizing loss function

◀ Complex functions need to be holomorphic (analytic) and complex
differentiable for gradient to exist, but many complex functions are not
analytic.

◀ Issues using complex loss function:

If the complex loss function f is analytic and bounded
everywhere, it is constant as implied by Liouville’s Theorem.
Also, if the loss function is complex, there is no notion of
orderedness in the complex loss function.

◀ If the loss function f is real-valued and analytic everywhere (i.e., v = 0),
the Cauchy-Riemann (CR) equations simplify to ∂u

∂x
= ∂u

∂y
= 0, implying

that if f must be constant.

◀ Solution: Wirtinger derivatives provide an alternative approach to
complex derivatives.
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Introducing Wirtinger derivatives

Suppose f(z) = u(x, y) + iv(x, y) and h = h1 + ih2.
Let’s break down f(z+h) using first order Taylor’s series:

u(c+ h) = u(c) +
∂u

∂x
(c)h1 +

∂u

∂y
(c)h2 + o(|h|),

v(c+ h) = v(c) +
∂v

∂x
(c)h1 +

∂v

∂y
(c)h2 + o(|h|).

Multiplying the second relation by i and adding it to the first one, we get:

f(c+ h) = f(c) +

(
∂u

∂x
(c) + i

∂v

∂x
(c)

)
h1 +

(
∂u

∂y
(c) + i

∂v

∂y
(c)

)
h2 + o(|h|).

Next, we substitute h1 and h2 using the relations h1 = h+h∗

2
and h2 = h−h∗

2i
.

f(c+ h) = f(c) +
1

2

(
∂f

∂x
(c)− i

∂f

∂y
(c)

)
h+

1

2

(
∂f

∂x
(c) + i

∂f

∂y
(c)

)
h∗ + o(|h|).
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Defining Wirtinger derivatives

f(c+ h) = f(c) +
1

2

(
∂f

∂z
(c)− i

∂f

∂z∗
(c)

)
h+

1

2

(
∂f

∂z
(c) + i

∂f

∂z∗
(c)

)
h∗ + o(|h|).

Definition

The Wirtinger derivative operators are

∂

∂z
:=

1

2

(
∂

∂x
− i

∂

∂y

)
∂

∂z∗
:=

1

2

(
∂

∂x
+ i

∂

∂y

)
In view of these new definitions, equation may now be recasted as follows:

f(c+ h) = f(c) +
∂f

∂z
(c)h+

∂f

∂z∗
(c)h∗ + o(|h|).
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Properties of wirtinger derivatives

Definition

The total differential of any complex valued function f is

df =
∂f

∂z
dz +

∂f

∂z∗
dz∗

Theorem

Given two complex functions f(z) and g(z), and any two complex constants a
and b, the linearity property of Wirtinger derivatives is expressed as:

1 For the derivative with respect to z:

∂

∂z
(af(z) + bg(z)) = a

∂f

∂z
+ b

∂g

∂z

2 For the derivative with respect to the conjugate of z (denoted as z∗):

∂

∂z∗
(af(z) + bg(z)) = a

∂f

∂z∗
+ b

∂g

∂z∗
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Conjugate property of wirtinger derivative

Theorem

If u, v is differentiable at a point c, then the following equality holds:(
∂f

∂z
(c)

)∗

=
∂f∗

∂z∗
(c). (1)

Theorem

If u, v is differentiable at a point c, then the following equality holds:(
∂f

∂z∗
(c)

)∗

=
∂f∗

∂z
(c). (2)

This result complements the previous one, showing the symmetry in the behavior
of the Wirtinger derivatives with respect to complex conjugation.
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Other properties

Theorem

Product Rule:
If f, g are differentiable in the real sense at c, then

∂(f · g)
∂z

(c) =
∂f

∂z
(c)g(c) + f(c)

∂g

∂z
(c),

∂(f · g)
∂z∗

(c) =
∂f

∂z∗
(c)g(c) + f(c)

∂g

∂z∗
(c).

Sketch of the proof: Let f(z) = f(x, y) = uf (x, y) + ivf (x, y), g(z) =
g(x, y) = ug(x, y)+ ivg(x, y) be two complex functions differentiable at c. Con-
sider the complex function r defined as r(z) = f(z)g(z). Then

r(z) = (uf (z) + ivg(z)) (ug(z) + ivg(z)) = (ufug − vfvg) + i (ufvg + vfug) .

We proved the product rule for the operators ∂
∂x

and ∂
∂y

and this proves the
product rule for W and CW derivatives.
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Other properties

Theorem

Reciprocal Rule: If f is differentiable in c and f(c) ̸= 0, then

∂
(

1
f

)
∂z

(c) = −
∂f
∂z

(c)

f2(c)
,

∂
(

1
f

)
∂z∗

(c) = −
∂f
∂z∗ (c)

f2(c)

Theorem

Division Rule: If f, g are differentiable in the real sense at c and g(c) ̸= 0, then

∂
(

f
g

)
∂z

(c) =
∂f
∂z

(c)g(c)− f(c) ∂g
∂z

(c)

g2(c)
,

∂
(

f
g

)
∂z

(c) =
∂f
∂z∗ (c)g(c)− f(c) ∂g

∂z∗ (c)

g2(c)
.

The division rule follows immediately from the multiplication rule and the recip-

rocal rule
(

f(c)
g(c)

= f(c) · 1
g(c)

)
.
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Chain Rule for Backpropagation

Theorem

If f, g are differentiable in the real sense i.e uf , ug, vf , vg are differentiable at c
and g(c) ̸= 0, then

∂g ◦ f
∂z

(c) =
∂g

∂z
(f(c))

∂f

∂z
(c) +

∂g

∂z∗
(f(c))

∂f∗

∂z
(c),

∂g ◦ f
∂z∗

(c) =
∂g

∂z
(f(c))

∂f

∂z∗
(c) +

∂g

∂z∗
(f(c))

∂f∗

∂z∗
(c).

Sketch of the Proof: Let’s write the total differential for f(g) :

d(f ◦ g) = ∂f

∂g
dg +

∂f

∂g∗
dg∗

Put dg and dg∗ in to the equation:

d(f ◦ g) =
(
∂f

dg

∂g

dz
+

∂f

dg∗
∂g∗

dz

)
dz +

(
∂f

dg

∂g

dz∗
+

∂f

dg∗
∂g∗

dz∗

)
dz∗

So, these are the chain rules and they are exactly same with the one we know for
real functions! (as thinking f(g, g∗), g(z, z∗) are real multi-variable functions)
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Optimizing Single Variable Real Loss Function

Theorem

If f is a real valued function(loss function) defined on C, the steepest descent’s
direction is − ∂f

∂z∗

Its first order Taylor’s expansion at z is given by:

f(c+ h) = f(c) +
∂f

∂z
(c)h+

(
∂f

∂z
(c)h

)∗

+ o(|h|) = f(c) + 2ℜ
[
∂f

∂z
(c)h

]
+ o(|h|).

However, in view of the Cauchy Riemann inequality we have:

ℜ
[
∂f

∂z
(c)h

]
= ℜ

[〈
h,

(
∂f

∂z
(c)

)∗〉
C

]
≤
∣∣∣∣〈h,(∂f

∂z
(c)

)∗〉
C

∣∣∣∣
≤ |h|

∣∣∣∣ ∂f∂z∗
(c)

∣∣∣∣ .
The equality in the above relationship holds, if h ↑ ∂f

∂z∗ . Direction of steepest

descent is - ∂f
∂z∗ . Update scheme of gradient descent based algorithm minimizing

f(z) is:

zn = zn−1 − µ · ∂f

∂z∗
(zn−1) , µ > 0
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Optimizing Multivariate Loss Functions

Consider a multivariate complex function f : Cn → R and let Z = (z1, z2, . . . , zn)
be a point in the domain of f .The total derivative of f at Z is:

df =

n∑
j=1

(
∂f

∂zj
hj +

∂f

∂zj∗
hj

∗
)
.

Since f is a real valued loss function, it must hold that:

df = 2Re

(
n∑

j=1

∂f

∂zj
hj

)
We define the gradient of f at Z w.r.t the complex variables as ∇f(Z) =(

∂f
∂z1

, . . . , ∂f
∂zn

)T
, and its conjugate transpose as∇f(Z)∗ =

(
∂f

∂z1∗ , . . . ,
∂f

∂zn∗

)T
.

Theorem

For the steepest descent, the direction is −∇f(Zi)
∗ = −

(
∂f

∂z1∗ , . . . ,
∂f

∂zn∗

)T
For Complex Valued NN, we do gradient descent as follows: Zi+1 = Zi −
λ∇f(Zi)

∗
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Conclusion

◀ We have conducted a systematic study of optimizing complex-valued
CNNs. We concluded that normal complex valued differentiation cannot
be used for optimizing complex-valued neural networks; instead, we need
to consider a different calculus called Wirtinger calculus

◀ We have derived useful properties of the Wirtinger calculus that is needed
for backpropagation.

◀ The expressiveness of Wirtinger derivatives are wonderful. Apart from
chain rule, every property with Wirtinger derivatives becomes same as
that one learned in real calculus.

17 / 18



Introduction Motivation Potential of Complex-valued Neural Networks Wirtinger Derivative Optimizing Loss Functions

Thank You

Any Questions?
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