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Introduction
[ ]

Introduction

< Convolutional Neural Networks (CNNs): Existing literature in
computer vision typically focus on real-valued data.

< Merits of Complex-Valued Signals: Having diverse applications in SAR,
MRI, and meteorology.

< Novel CNN Variation: Introduction of CNNs utilizing complex-valued
inputs and weights, enhancing phase capture in images.

< Challenges and Exploration: Adapting optimization techniques, like
backpropagation, for complex-valued neural networks.
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Motivation
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Motivation

< Noise Reduction via FFT:
Starting with a noisy image, FFT translates it into frequency domain.
A circular low-pass filter removes high-frequency noise, and Inverse FFT
restores the image with reduced noise and enhanced clarity.

Input FFT (mag) Filtered FFT IFFT

Figure 1: Process of Image Restoration using Fourier transform
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Potential of Complex-valued Neural Networks

Orthogonal Decision Boundaries

< Complex-valued neurons create decision boundaries consisting of two
intersecting hypersurfaces at orthogonal angles, enhancing classification
capabilities.

< Single complex-valued neuron with n-inputs is equivalent to two
real-valued neurons with 2n-inputs which have a restriction on a set of
weight parameters.

< For a single neuron with a single input,complex weight W = w; + twa.
Let M be the matrix representing the transformation:

Mo (W —w2) Wl cos(arg(W)) —sin(arg(W))
C\we owr ) sin(arg(W))  cos(arg(W))
< This orthogonality improves generalization. Example, several problems

like XOR that cannot be solved with a single real neuron, can be solved
with a single complex-valued neuron using the orthogonal property.
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Potential of Complex-valued Neural Networks

Other Advantages of using CVNNs

< Complex Activation Functions: Real-valued non-linear activations
cannot maintain the magnitude and phase information of complex-valued
inputs. Complex-valued activations in CVNNs preserve the intricate
relationships embedded in complex data’s magnitude and phase .

< Enhanced Information Encoding: Complex numbers allow for the
encoding of more information in the same number of parameters.

< Robustness to Noise: Their ability to handle complex representations
allows them to effectively discard and filter out irrelevant fluctuations,
leading to more accurate and reliable outputs in noisy environments.

loN COMPLEX-DOMAIN CNN REPRESENTATIONS FOR CLASSIFYING REAL/COMPLEX-VALUED
DATA Mahesh Mohan M R, K Srivastava, N Ahuja, 2023 (under review)
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Wirtinger Derivative
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Complex Calculus Preliminaries

Definition

A complex function f is complex differentiable at z, if the following limit exists

h—0 h

.

Definition

A complex function f is complex differentiable at point z iff u,v are
differentiable (as real functions) , and the Cauchy-Riemann equations hold at z:

ou_on  ou_ o
o~ Oy oy Oz’

¢

Definition

Liouville’s Theorem:
If f(z) is an analytic function for all finite values of z and is bounded for all
values of z in C, then f is a constant function.
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Wirtinger Derivative
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Challenges in optimizing loss function

< Complex functions need to be holomorphic (analytic) and complex
differentiable for gradient to exist, but many complex functions are not
analytic.

< |[ssues using complex loss function:

o If the complex loss function f is analytic and bounded
everywhere, it is constant as implied by Liouville's Theorem.

o Also, if the loss function is complex, there is no notion of
orderedness in the complex loss function.

< If the loss function f is real-valued and analytic everywhere (i.e., v = 0),
the Cauchy-Riemann (CR) equations simplify to % = %Z =0, implying
that if f must be constant.

< Solution: Wirtinger derivatives provide an alternative approach to
complex derivatives.
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Wirtinger Derivative
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Introducing Wirtinger derivatives

Suppose f(z) = u(z,y) +iv(z,y) and h = h1 + ths.
Let's break down f(z+h) using first order Taylor's series:

ou ou
u(e+h) = u(e) + 7 (c)ha + afy(C)hz + o(hl),
0 0
vle+h) = () + G (b + 5o (e)ha + o(| ).
Multiplying the second relation by i and adding it to the first one, we get:
ou v ou v
et )= £0)+ (5200 + 1520 )+ (G0 +i52(@) ) ha-+ o)
Next, we substitute h1 and ho using the relations h; = 0" and hy = _—h*.

2

flern) =10+ 5 (@ -i%@) e+ 3 (F@+idla)w + o,
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Wirtinger Derivative
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Defining Wirtinger derivatives

Fleth) = fe)+ 1 <g£(c) it (c)> het s (gi;(c) +ild (c)) B+ o(lhl).

The Wirtinger derivative operators are

9. _1(9 _,90
0z 2\0x Oy

o _1(0 0
0z~ 2\0x Oy

In view of these new definitions, equation may now be recasted as follows:

fle+h)=f(c)+ %(c)h + 88,5* (c)h™ + o(|h]).
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Wirtinger Derivative
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Properties of wirtinger derivatives

Definition

The total differential of any complex valued function f is

= O

Theorem

Given two complex functions f(z) and g(z), and any two complex constants a
and b, the linearity property of Wirtinger derivatives is expressed as:

For the derivative with respect to z:
ad af dg
= (af() +bg(=)) = aSh +b2

For the derivative with respect to the conjugate of z (denoted as z*):

0 0 0
2 (@f(2) +bg(z)) = an L + b5
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Wirtinger Derivative
[e]e]e]e]e] lelele)

Conjugate property of wirtinger derivative

If w,v is differentiable at a point c, then the following equality holds:

(L) -ZLo. )

A

If w,v is differentiable at a point c, then the following equality holds:

(o) -%Le @)

v

This result complements the previous one, showing the symmetry in the behavior
of the Wirtinger derivatives with respect to complex conjugation.
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Wirtinger Derivative
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Other properties

Product Rule:
If f, g are differentiable in the real sense at ¢, then

U9 () = U (e)ge) + 10 L ),
of-9), \_ Of 99
I (0= L (0)g(e) + 10) 2 (c).

V.

Sketch of the proof: Let f(z) = f(z,y) = us(z,y) + ivs(z,y),g(z) =
g(z,y) = ug(x,y) +ivg(x,y) be two complex functions differentiable at c. Con-
sider the complex function r defined as r(z) = f(2)g(z). Then

7(2) = (ug(2) +ivg(2)) (ug(2) +ivg(2)) = (ugug = vyvg) + i (usvg + vsug).

We proved the product rule for the operators a% and a% and this proves the
product rule for W and CW derivatives.
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Wirtinger Derivative
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Other properties

1

0 (?
0z*

Reciprocal Rule: If f is differentiable in ¢ and f(c) # 0, then
) . 2

9z

) 3 (o)

a(%

) _ -
rocal rule (g(c> = f(c) g(c>).

oz (C) = - fg(c)a
Division Rule: If f, g are differentiable in the real sense at ¢ and g(c) # 0, then
I
2(3) ) _ 3000 - 1020
0z g2(c) '
i
2(5) ) _ #0000 - 1020
0z 9%(c) '
v
The division rule follows immediately from the multiplication rule and the recip-
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Wirtinger Derivative
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Chain Rule for Backpropagation

If f, g are differentiable in the real sense i.e uy,ugq,vs, vy are differentiable at c
and g(c) # 0, then

dg o 0 0 1o}
997 () = B (s (o) + 2 o 9 (7N,
997 0y = 2 (1) 2L o)+ 22 (1) 2L (e, )
Sketch of the Proof: Let's write the total differential for f(g) :
difog) = Ghag+ JLag

Put dg and dg™ in to the equation:
_(0f09g  Of 99" 0f 0g | 0f 99" , «
dfog)= (dg iz T agdz ) ¥ \dgde Tdgar ) F

So, these are the chain rules and they are exactly same with the one we know for
real functions! (as thinking f(g,9%),g(z,2") are real multi-variable functions)
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Optimizing Loss Functions
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Optimizing Single Variable Real Loss Function

If f is a real valued function(loss function) defined on C, the steepest descent’s

g g . Of
direction is — 5%

Its first order Taylor's expansion at z is given by:

e =@+ Fan+ (Fan) +otnh =5+ |5 @n] +on.

However, in view of the Cauchy Riemann inequality we have:

[oren] == {(n (5l0) ) ] =0 (Gleo) )

,Ihl‘ﬁ() .

The equality in the above relationship holds, if A T *. Direction of steepest
Update scheme of gradient descent based algorithm minimizing

descent is -

fz) is:

8*'

of
Zn = Zn—-1— WU —— (Zn— >0
L= g (ene1) s 15718



Optimizing Loss Functions
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Optimizing Multivariate Loss Functions

Consider a multivariate complex function f : C® — Rand let Z = (21, 22,. .., 2n)
be a point in the domain of f.The total derivative of f at Z is:

N~ (Of, L Of .
df;(azjhj+3zj*h] )

Since f is a real valued loss function, it must hold that:

_ ~Of
df_2Re< 8Zjhj)

j=1
We define the gradient of f at Z w.r.t the complex variables as Vf(Z) =

af ar \7 . . . of ar \*
(ﬂ""’ az") , and its conjugate transpose as Vf(Z)* = (W""’W) .

8 ar \T
For the steepest descent, the direction is —V f(Z;)" = — (#, e, ai*)
For Complex Valued NN, we do gradient descent as follows: 7,11 = Z; —
AV (Z:)



Optimizing Loss Functions
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Conclusion

< We have conducted a systematic study of optimizing complex-valued
CNNs. We concluded that normal complex valued differentiation cannot
be used for optimizing complex-valued neural networks; instead, we need
to consider a different calculus called Wirtinger calculus

< We have derived useful properties of the Wirtinger calculus that is needed
for backpropagation.

< The expressiveness of Wirtinger derivatives are wonderful. Apart from
chain rule, every property with Wirtinger derivatives becomes same as
that one learned in real calculus.
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Optimizing Loss Functions
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Thank You

Any Questions?
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