
Unconstrained Motion Deblurring for Dual-lens Cameras

(Supplementary Material)

M. R. Mahesh Mohan, Sharath Girish, and A. N. Rajagopalan

Indian Institute of Technology Madras

{ee14d023,ee15b058,raju}@ee.iitm.ac.in

The contents of this supplementary material are arranged as follows:

1. Derivations and Proofs

(a) Full derivation of DL pixel-mapping (in Eq. (4)).

(b) Proof of Claim 2 (i.e., the biconvexity property), and that individual optimizations in Eq. (8) are convex.

(c) Derivation of equivalent LASSO formulation (in Eq. (9)).

(d) Proofs of Remarks 1-3 (i.e., the inadequacy of the normal camera methods [12, 18, 16] for DL-BMD).

2. Analysis and Discussions

(a) Sensitivity of center-of-rotation (in narrow- and wide-FOV configurations).

(b) Image-noise analysis.

(c) Performance dependency with respect to depth quality.

(d) Generalizability to diverse DL set-ups.

(e) The uniqueness of our proposed DL pixel-mapping (Eq. (4)) over the homography mapping [16].

(f) Implementation details and time analysis.

3. Additional Evaluations

(a) Comparisons with all the methods [17, 9, 5, 1, 15, 11, 12, 18] for the examples in the main paper.

(b) Additional examples (with extensive comparisons).

(c) More real-world examples.

Note: The sections, equations and figures in the supplementary are indexed with a prefix ‘S’ (e.g., Eq. (S11), Sec. S2).

S1. Derivations and Proofs

(a). Derivation of DL pixel-mapping: Using Eq. (1), the transformation of a world coordinate X for a stationary camera

(i.e., R = I) can be written as

X
′′ = X+ lb, (S1)

where X(3) (= Z) is the depth of the scene-point X and lb is the baseline vector. The world coordinate X
′′ maps to the

corresponding sensor-coordinate x (in accordance with Eq. (2)) as

x = KnX
′′

Z ′′ = KnX
′′

Z
= Kn (X+ lb)

Z
∵ lb(3) = 0. (S2)

Next, we consider the case of a camera pose-change R about the COR lc. That is, the world coordinate X is transformed as

X
′ = R(X− lc) + lc + lb = R(X+ lb) + (I −R)lc + (I −R)lb. (S3)
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Substituting Eq. (S2) in Eq. (S3) yields

X
′ = ZR(Kn)−1

x+ (I −R)lc + (I −R)lb. (S4)

Using Eq. (2), the world coordinate X
′ maps to the corresponding sensor-coordinate x

′ as

x
′ = KnX

′

Z ′ =
Z

Z ′K
nR(Kn)−1

x+
1

Z ′K
n(I −R)lc +

1

Z ′K
n(I −R)lb,

=
Z

Z ′

(

KnR(Kn)−1
x+

1

Z
Kn(I −R)lc +

1

Z
Kn(I −R)lb

)

.

(S5)

As the sensor coordinate x
′ is in homogeneous system, x′(3) should be unity. Therefore, the scale Z/Z ′ in Eq. (S5) can be

considered as a normalization constant (say λ) that normalizes the third coordinate of x′ to 1, which establishes Eq. (4). �

(b). Proofs of biconvexity:

(Note: For the proofs, we employ two well-known properties of convex functions: (1) Composite function of convex func-

tions is convex. (2) Non-negative addition of convex (or biconvex) functions is a convex (or biconvex) function [3].)

Lemma S1: The costs Ln (and Lw) are individually biconvex in image I
n
C and MDF w

n (and I
w
C and w

w), respectively.

(Note: A function is biconvex in I and w if it is convex in I for a given w, and vice-versa.)

Proof: For a given I
n
C , the cost Ln (in Eq. (5)) is given as

Ln = ‖An
w

n − I
n
B‖

2
2 + λn

1‖w
n‖1 + Constant, (S6)

where the ‘Constant’ is λn
2‖∇I

n
C‖1. The first and second terms are composite of two convex functions (i.e., a linear transfor-

mation of wn and its squared-l2 or l1 norm), and hence convex (Property 1). Further, the third term is convex as a constant

is a convex function. Therefore, the cost Ln is convex with respect to w
n (by Property 2 mentioned above).

For a given w
n, the cost Ln (in Eq. (5)) can be equivalently represented as

Ln = ‖Mn
I
n
C − I

n
B‖

2
2 + λn

2‖∇I
n
C‖1 + Constant, (S7)

where the ‘Constant’ is λn
1‖w

n‖1. Again, the first and second terms are composite of two convex functions (i.e., a linear

transformation of InC and its squared-l2 or l1 norm), and the third term is convex. Therefore, the cost Ln is convex with respect

to I
n
C (by Property 2). Hence Ln is biconvex in I

n
C and w

n. Similarly, we can show that Lw is biconvex in I
w
C and w

w. �

Claim S1: The DL-BMD cost L = Ln + Lw (Eq. (5)) is a biconvex function in image-pair {InC , I
w
C} and MDF-pair

{wn,ww}.

Proof: (We denote the function F for a given w as Fw.) From Lemma 1, the biconvexity of Ln implies

Ln
wn

(
γI1

n
C + (1− γ)I2

n
C

)
≤ γLn

wn(I1
n
C) + (1− γ)Ln

wn(I2
n
C) ∀{I1

n
C , I2

n
C ,w

n}, ∀γ ∈ [0, 1];

Ln
In
C

(
γw1

n + (1− γ)w2
n
)
≤ γLn

In
C

(w1
n) + (1− γ)Ln

In
C

(w2
n) ∀{w1

n,w2
n, InC}, ∀γ ∈ [0, 1].

(S8)

As the cost Ln is independent of wide-angle parameters {IwC ,w
w}, Eq. (S8) can be equivalently written as

Ln
{wn,ww}

(
γ{I1

n
C , I1

w
C}+ (1− γ){I2

n
C , I2

w
C}

)
≤ γLn

{wn,ww}({I1
n
C , I1

w
C}) + (1− γ)Ln

{wn,ww}({I2
n
C , I2

w
C});

Ln
{In

C
,Iw

C
}
(
γ{w1

n,w1
w}+ (1− γ){w2

n,w2
w}

)
≤ γLn

{In
C
,Iw

C
}({w1

n,w1
w}) + (1− γ)Ln

{In
C
,Iw

C
}({w2

n,w2
w}).

(S9)

Eq. (S9) implies that Ln is biconvex in {InC , I
w
C} and {wn,ww}. Following similar steps, the same inference can be derived

for Lw too. Since the DL-BMD cost L is obtained by the summation of two biconvex function Ln and Lw, it must be bicon-

vex with respect to image-pair {InC , I
w
C} and MDF-pair {wn,ww} (by Property 2). Hence proved. �

Corollary S1: Introducing the DL prior in the DL-BMD objective L (Eq. (5)) retains the biconvexity property.

Proof: The prior Lp = α‖wn −w
w‖2 : α > 0 can be equivalently represented as

Lp = α‖Sw‖2, where S = diag(I,−I), and w is the concatenation of vectors wn and w
w. (S10)

First, Lp

{wn,ww}({I
n
C , I

w
C}) is a constant, and therefore it is convex with respect to dual image-pair {InC , I

w
C}. Second,

Lp

{In
C
,Iw

C
}({w

n,ww}) is a composite of two convex functions, (i.e., l2 norm of a linear transformation of {wn,ww}).



Hence, the function is convex in {wn,ww} (by Property 1). Therefore, the prior Lp is biconvex in {InC , I
w
C} and MDF-

pair {wn,ww}. Resultantly, the addition of Lp to a biconvex function L (Claim S1) retains the biconvexity property (by

Property 2). �

Corollary S2: Individual optimizations for MDF and latent image in Eq. (8) are convex.

Proof: MDF optimization problem is given as (Eq. (8)):

w̃n = argmin
wn

‖Ãn
w

n − IB
n‖22 + α‖wn − w̃

w‖22
︸ ︷︷ ︸

G

: ‖wn‖1 ≤ λ′n
1 , (S11)

The first term of G is convex in w
n (proved in Lemma S1). As the DL prior (the second term) is convex with respect to both

the MDFs {wn,ww} combined, it should be convex in w
n for a given w

w. Also, the feasible set is convex [3]. Thus the

MDF estimation is a convex optimization problem. The convexity of latent image estimation directly follows from the proof

of Claim 1 (Eq. (S7)). �

(c). Derivation of LASSO formulation for ego-motion estimation with prior: As Eq. (S11) is a convex optimization

problem, ŵn is an optimal solution iff

∇G(ŵn) = 0 : ‖ŵn‖1 ≤ λn
3 , where ∇G(wn) = 2 ·

(
(ÃnT

Ã
n + αI)wn − (ÃnT

IB
n + αw̃w)

)
(S12)

Leveraging Eq. (S12), we frame a new optimization problem as follows: As ∇G is multi-dimensional, we consider the cost

as the l2 norm of ∇G (to convert to a single-valued objective function), i.e.,

w̃
n = argmin

wn
‖∇G(wn)‖22 : ‖wn‖1 ≤ λn

3 (S13)

The new problem in Eq. (S13) possesses several desirable properties (in addition to the LASSO structure). (I) It is a convex

optimization problem, i.e., any local minima need to be a global minima and objective value of all minima should be the

same. (II) ‖∇G(wn)‖22 ≥ 0 and ‖∇G(wn)‖22 = 0 iff ∇G(wn) = 0 (properties of norm). (III) Optimal solution ŵ
n of

the problem in Eq. (S11) has to satisfy ‖∇G(ŵn)‖22 = 0, which is a minima of Eq. (S13) (by Property (II)). Property (III)

implies that all solutions of the optimization problem in Eq. (S11) will also be solutions of the LASSO famework. Also, since

Eq. (S12) is a necessary and sufficient condition, all solutions of the LASSO framework will be solutions of the problem in

Eq. (S11) (by Properties (I-II)), thereby establishing the equivalence of both the frameworks.

(d). Proofs of Remarks 1-3 in main paper:

(Note: For scenes with infinite depth, there exists no baseline-induced parallax (or depth cues). Thus, it is finite depths that

are of primary interest to DL set-up as they induce non-zero disparities. Therefore, we consider scenes with finite-depth.)

Remark 1: The motion blur model of the methods [12, 18, 16] admits only a depth invariant model, whereas motion blur in

a DL set-up warrants a depth variant model.

Proof: The pixel-mapping employed in single-lens model is given as [16]

x̂
′ = λKR̂K−1

x (S14)

where λ normalizes the third coordinate of x̂′ to 1. Note that the mapping in Eq. (S14) is invariant to scene-depth, unlike the

depth-variant mapping of DL system due to baseline and COR (from Eq. (4)). Consider an arbitrary image-coordinate x0

with corresponding scene-depth Z0. Let R̂{x0,Z0} be the optimal pose in Eq. (S14) that equates to the homography-mapping

of the DL system at x0 (i.e., x′ = x̂
′, for x = x0). As Eq. (S14) is depth-invariant, fixing a pose suitable for x0 will

concurrently fix the mapping at all other coordinates irrespective of their depth values. This clearly violates the inherent

depth-variant mapping of DL system at those coordinates. Consequently, the PSF optimized for the coordinate x0, through

multiple poses R̂t{x0,Z0} for t ∈ te, concurrently fixes the PSF at other coordinates irrespective of their depth values; thereby

failing to model the depth-variant PSFs in a DL setup. �

Remark 2: The blur model of the methods [12, 18, 16] modulate the baseline with camera poses, but it must be independent

for a DL set-up (for scene-consistent disparities).

Proof: Motion blur model in single-lens system is given as [16]

Î
n
B =

1

tne

∫

tn
e

Pn
(
R̂t(Y)

)
dt, (S15)
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Figure S1. DL configuration warrants a depth-variant transformation (Note the variation of PSF in Fig. (b) with respect to the scene depth

in Fig. (a)). As the single-lens motion blur model is depth-invariant, the model optimized for a fixed depth can fail for other depths, leading

to ineffective deblurring across depths (Fig. (d)).
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Figure S2. Analysis: (a) Model inaccuracies of the homography model. (b) Sensitivity of COR: Both narrow-angle and wide-angle

configurations are very sensitive to COR, with the former exhibiting relatively more sensitivity. (c-d) Effect of image and depth noise.

where the world-coordinate system Y is defined with respect to the optical center (i.e., lb = lc = 0). In the DL blur

model (Eqs. (2)-(3)), the effect of stereo baseline is independent of camera pose-changes, and the disparity relation between

stereo image-pair is due to the baseline (lb). Enforcing the single-lens model in the narrow-angle image leads to Î
n
B =

(1/tne )
∫

tn
e

Pn
(
R̂t(X + lb)

)
dt (where the world coordinate X is defined with respect to wide-angle camera, as followed in

Eqs. (1)-(2)). Evidently, the effect of baseline in this case varies with pose-change R̂t, unlike the DL model. Specifically,

it characterizes an alien dual-lens set-up with its own physical lens-separation, and in turn the scene disparities, getting

modulated by pose-changes over time. �

Remark 3: The methods [12, 18, 16] also admit the ill-posedness that disrupts scene-consistent disparities.

This is a special case of Claim 1 (in the main paper), wherein lb = lc = 0.

S2. Analysis and Discussions

(a). Sensitivity of center-of-rotation: To analyze the sensitivity of COR for narrow-angle and wide-angle configurations,

we considered images blurred with a common COR , and performed deblurring by perturbing the COR vector and using the

true ego-motion (identically for both the configurations). Figure S2(b) compares the average PSNR of deblurred images for

different COR approximations. The figure clearly shows a significant drop in deblurring performance as the approximated

COR deviates from the true COR. Also, note the detrimental effect of the common COR approximation about the camera

center (that is followed in single-lens BMD methods). The figure also reveals higher sensitivity of COR in narrow-angle

configuration as shown by the higher rate of its performance-drop. This is due to higher focal-length, and hence larger blur

inherent in narrow-angle setup which is a function of COR (as noted in Sec. 2).

(b). Image-noise analysis: To analyze the effect of noise in our DL-BMD method, we experimented with blurry images

corrupted with additive white Gaussian noise. Standard-deviation of noise (in pixels) is varied from 0 (noise-less case) to

5. Fig. S2(c) plots the average PSNRs of a deblurred image and depth estimate corresponding to different noise levels. The

average PSNRs for deblurred image and depth-estimate is more than 25 dB and 29 dB, respectively, over the entire standard-

deviation range; this clearly reveals the noise-robustness of our algorithm. Although we did not perform denoising in any

examples, for very high noisy levels, the blurred image-pair need to be denoised prior to deblurring. This is because noise

can deteriorate image-gradients which are required for ego-motion estimation (Sec. 4).

(c). Performance dependency with respect to depth quality: The total variation prior in the DL-BMD cost is employed

to curb ringing artifacts. We analysed the depth-dependency by adding AWGN in disparity-map (following [10, 8, 13]). The



(a) Wide-angle blurred (b) True MDF (c) MDF with prior (d) MDF without prior

(e) Narrow-angle images (f) Wide-angle images (g) Wide-angle image-patches

(1) Ground truth
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Figure S3. Effect of the proposed prior: The MDF estimate and the deblurred image-patches of prior-less case clearly show a significant

rotational ambiguity (Figs. [g,3] and d). Also, the deblurred image in the prior-less case exhibits considerable ringing artifacts and residual

blur (Figs. [e-f,3]), which could be possibly due to the less accurate MDF estimate (Fig. d). In contrast, the addition of the prior successfully

curbs the pose ambiguity (Figs. [g,2] and c), improves the MDF accuracy (Fig. c) and produces better deblurring quality (Figs. [e-f,2]).

standard deviation (SD) of noise is varied from 0 to 40% of mean disparity, in the disparity-map estimate in all iterations (a

worst-case scenario). In Fig. S2(d), we plot the results averaged over five trials for each SD-unit (for the example in Fig. S3),

where we utilize the metrics RMSE and bad pixel ratio for depth. Note that over the entire SD-range, image-PSNR and

depth-RMSE are reduced by only 0.875 dB and 0.622 px, respectively, which clearly reveals our method’s robustness.

(d). Generalizability to diverse DL set-ups: Here, we show the generalizability of our algorithm to different types of DL



Configuration Metrics Blurred Xu et al. [17] Mohan et al. [9] Ours

Narrow-Narrow
Image PSNR/IFC/VIF 27.27 / 1.75 / 0.23 19.90 / 1.08 / 0.22 29.21 / 2.30 / 0.36 31.03 / 3.04 / 0.43

Depth PSNR 29.22 15.83 29.50 30.35

Narrow-Wide
Image PSNR/IFC/VIF 27.33 / 1.78 / 0.23 19.86 / 1.13 / 0.22 26.50 / 1.95 / 0.31 30.50 / 3.10 / 0.42

Depth PSNR 28.51 15.29 28.56 31.11

Wide-Wide
Image PSNR/IFC/VIF 27.87 / 1.97 / 0.27 14.56 / 0.94 / 0.17 25.90 / 2.04 / 0.32 30.64 / 4.40 / 0.56

Depth PSNR 30.15 13.88 28.56 30.62

Table S1. Generalizability to diverse DL set-ups: Our method consistently outperforms the methods of [17, 9] in the PSNR, IFC and VIF

metrics for image and the PSNR metric for depth.

set-up. The image PSNR, VIF, IFC metrics and depth PSNR metric are shown in the Table S1 for the three DL-configurations:

Narrow-Narrow, Narrow-Wide, Wide-Wide. We consider the same exposure time for both cameras, 52mm focal length for

narrow angle camera and 26mm focal length for the wide angle camera. The values reported in the Table S1 are averaged

over three examples. As can be seen, our method performs consistently better than the methods of [17, 9] in all three

configurations. Specifically, in terms of Image/Depth PSNR, our method outperforms [9] by 0.82/0.85 dB for Narrow-

Narrow setup, 4.00/2.55 dB for Narrow-Wide setup and 4.74/2.06 dB for Wide-Wide setup.

(e). Uniqueness of our proposed DL pixel-mapping (Eq. (4)) over homography mapping [16]. The uniqueness is due

to the latter’s depth-invariant nature, which we illustrate with two experiments. For a camera-pose sampled from a real

trajectory [6], Fig. S2(a) shows the best approximation error of the homography-mapping of normal cameras to the pixel-

mapping of Eq. (4), optimized for a given depth (under least-squares criteria), for the set-up of Samsung S9+. Notably,

the homography fails to model the DL pixel-wise mapping consistently over different depths, which clearly illustrates the

uniqueness of Eq. (4). Further, to analyze the depth-variant nature of PSFs, Figs. S1(a-d) consider a camera trajectory and a

3D scene from [14]. Fig. S1(b) shows the corresponding PSFs (projected using Eq. (4)), which reveals depth-dependency of

blur, with lower depths exhibiting severe blurs relative to the farther ones. Figure S1(d) shows the deblurred image-patches

for different depths employing the normal camera method [18], optimized for a given depth; it is evident that this approach

is not quite successful due to the depth-dependency of the blur, which clearly necessitates a new approach for DL-BMD.

(f). Implementation details and time analysis: We used a PC with an Intel Xeon processor and a 16 GB RAM for all

experiments, and implemented our algorithm in MATLAB. For the scale-space based alternating minimization, we used 5

scales with 6 iterations each. The scaling factor for the ith scale is selected as 1√
2

(i−1)
. For estimating COR (following

Eq. (7)), we have employed the MATLAB built-in function lsqnonlin. For depth estimation, we adopted the optical-flow

algorithm of [7] and we employed the default parameters (as it provides a good trade-off between speed and accuracy).

For optimizing the cost for MDF (Eq. (9)), we used the LARS solver of [4] (which efficiently solves LASSO problems).

The regularization for the proposed MDF-prior α is adapted with the scales as 5
(9−i)

2 (Note that a higher regularization is

employed as MDF vectors have smaller values as compared to images). We have selected the sparsity regularization (λ3) as

0.01 for both narrow-angle and wide-angle MDFs. We employed ADMM [2] to optimize the cost for latent-image with total-

variation prior, where we used the total-variation regularization as 0.005. For latent image estimation, we consider grey-scale

image until the final scale and 5th iteration (to reduce the computational time). We found that for deblurring a 1280 × 720
RGB narrow-angle image (of maximum blur-length of 30 pixels) and a focal-length ratio of two, our unoptimized MATLAB

implementation took about 23 minutes to deblur the dual image-pair. A detailed break-up of the time taken for the final scale,

final iteration is as follows: optimizing COR took 49.7s, estimating depth took 14.7s, MDF estimation took 56.4s, and RGB

latent image estimation took 39.4s.

S3. Additional Evaluations

We employed the publicly available codes for [17, 18, 15, 11, 12, 5]. Codes for [1] and [9] were shared by the authors

upon request. We used default parameters for all the codes. Figure S3 provides the full images corresponding to the Fig. 1.

Figures S4-S7 provide a thorough qualitative evaluation with all the competing methods, i.e., state-of-the-art DL-BMD [17],

single-lens BMD [18, 12], depth-aware BMD [5, 1], light field BMD [9], and deep learning based approaches [15, 11].

In addition to the examples presented in the main paper, we provide eight examples which include five real scenes under

low-light and well-lit scenarios (Figs. S11, S12, and S13). For each example, we show deblurred narrow-angle image (with

highlighted patches magnified), and estimated depth (with highlighted patches). The consistent performance of our algorithm



over all the examples in retrieving scene-features at different depths (unlike the competing methods), with negligible residual

blur and ringing artifacts, and accurate depth estimates amply demonstrates the superiority of our method.
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[6] Rolf Köhler, Michael Hirsch, Betty Mohler, Bernhard Schölkopf, and Stefan Harmeling. Recording and playback of camera shake:

Benchmarking blind deconvolution with a real-world database. In European Conference on Computer Vision (ECCV), pages 27–40.

Springer, 2012. 6

[7] Ce Liu et al. Beyond pixels: exploring new representations and applications for motion analysis. PhD thesis, Massachusetts Institute

of Technology, 2009. 6

[8] Lee-Kang Liu, Stanley H Chan, and Truong Q Nguyen. Depth reconstruction from sparse samples: Representation, algorithm, and

sampling. IEEE Transactions on Image Processing, 24(6):1983–1996, 2015. 4

[9] M. R. Mahesh Mohan and A. N. Rajagopalan. Divide and conquer for full-resolution light field deblurring. In IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), pages 6421–6429, 2018. 1, 6, 8, 9, 10, 11, 12, 13, 14, 15, 16

[10] Srimanta Mandal, Arnav Bhavsar, and Anil Kumar Sao. Depth map restoration from undersampled data. IEEE Transactions on

Image Processing, 26(1):119–134, 2016. 4

[11] T. M. Nimisha, Akash Kumar Singh, and A. N. Rajagopalan. Blur-invariant deep learning for blind-deblurring. In IEEE International

Conference on Computer Vision (ICCV), pages 4762–4770, 2017. 1, 6, 8, 9, 10, 11, 12, 13, 14, 15, 16

[12] Jinshan Pan, Deqing Sun, Hanspeter Pfister, and Ming-Hsuan Yang. Blind image deblurring using dark channel prior. In IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), pages 1628–1636, 2016. 1, 3, 4, 6, 8, 9, 10, 11, 12, 13, 14, 15, 16
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Figure S4. Synthetic experiments: Our method is able to retrieve the finer details at different depth levels with little ringing. The text in the

patches are sharper when compared with the other methods.
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Figure S5. Real experiments: Unlike the results of [9, 12, 17], our method is able to deblur the image with no artifacts while also recovering

the finer details on the chandelier and the wall. Also, note the ineffectiveness of the single-lens methods [5, 12, 18] in DL configuration.
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Figure S6. Real experiments: The results of the deep learning methods of [11, 15] exhibit a significant amount of residual blur. Our method

is able to faithfully preserve the depth information and exhibits the least ringing artifacts.
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Figure S7. Real experiments: Unlike all the other methods, our method is able to recover fine textual information on the car and also the

thin branches in the background. The light field method of [9] and the dual lens method of [17] exhibit severe artifacts in the deblurred

image.
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Figure S8. Synthetic experiments: Our method recovers the sharp details of the image such as on the guitar and the book without any

erroneous depth values.
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Figure S9. Synthetic experiments: Our method retrieves scene features without introducing aritificial structures (unlike the deep learning

method [11]), e.g., the features in the highlighted patches in [11] are hallucinated by the deep learning N/W. Resultantly, depth estimates

of [11] are inadequate due to uneven hallucinations in the dual image-pair.
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Figure S10. Synthetic experiments: Our method has considerably lesser ringing and sharper features (such as on the closer doll and the

farther basket) leading to good depth estimates compared to the other methods.
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Figure S11. Real experiments: Even in a low-light (noisy) scenario, the uniform deblurring performance of our method over different depth

levels reveals the noise-robustness of our method.
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Figure S12. Real experiments (Well-lit scenario): The uniform deblurring over different depth levels yet again proves the effectiveness of

our proposed method. Notably, the depth estimate is more accurate and finer in our approach as compared to the competing methods.
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Figure S13. More real-world examples: (a) Blurry Image and (b) Our result.


