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Why Dual-lens Cameras?

A DL camera captures depth information, hence supporting many applications.

Left-view Right-view Depth Segmentation [1]

Scene Understanding Binocular or 3D Vision Bokeh Rendering
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Constrained Dual-lens Cameras?

Two cameras share the same configuration.

Examples of constrained DL cameras

1 Same focal lengths (or field-of-views).
2 Fully overlapping exposure times.
3 Same image resolutions.
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Unconstrained Dual-lens Cameras?

Two cameras need not share the same configuration.

Examples of unconstrained DL cameras

1 Focal lengths
Same: Binocular or 3D vision.
Different: Capture narrow, wide, or wider field-of-views.

2 Exposure times
Full-overlap: Super-resolution and visual odometry [2, 3, 4].

Differently exposed: HDR imaging, low-light photography, and stereoscopics [5, 6, 7, 8].

3 Can have different image resolutions.
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Motion Blur in Unconstrained DL Cameras

1 Motion blur due to camera motion is a ubiquitous phenomenon.
2 But it is unexplored in unconstrained DL set-ups.

Our objective: Motion deblurring with scene-consistent disparities.

=⇒

=⇒

Input Output
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Motion Deblurring in Unconstrained DL Cameras

Has additional challenges (over single-lens cameras).
1 Popular narrow-FOV: Amplifies blur and center-of-rotation effect.

We introduce a generalized dual-lens blur model, including COR.

2 Ensure scene-consistent disparities.
We reveal an inherent ill-posedness present in dual (or multi) lens cameras.
To this end, we devise a prior that is convex and admits efficient optimization.

3 Handle more than one image: Higher dimensional optimization.
We introduce a practical deblurring method (suitable for all multi-lens set-ups).

iPhone’s “unconstrained triple-lens” launch, 2019 September.
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Generalized Dual-lens Motion Blur model

Motion blurred image is a combination of multiple warped images.

Latent image Camera motion (MDF) Motion blurred image

InB = ∑
p∈P3

wn(p) ·Pn
(

Rp(X− lc)+ lc+ lb
)

dp, (1)

InB → blurred image lc → COR lb → base-line P3 → Camera pose-space (rotations)

wn(p)→ proportion of time camera stayed in pose p Pn(·)→World-to-sensor projection
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Ill-posedness in Unconstrained DL Motion Deblurring

Claim 1: There exist multiple valid solutions of deblurred image-pairs.

InB = ∑
p

wn(p)Pn
(

Rp( X︸︷︷︸
true

−lc)+ lc + lb
)
,

= ∑
p

wn(p)Pn
(

RpR−1
n
(

Rn(X− lc)+ lc︸ ︷︷ ︸
apparent

−lc
)
+ lc + lb

)
, ∀Rn.

(3)
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(a) True solution (b) An apparent solution (inplane rotation)

True: Scene-features A, B, and C are at the same depth.

Apparent: Erroneously, A, B, and C have different depths.
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A new prior for Unconstrained DL Motion Deblurring

Ill-posedness is due to relative shifts among individual MDFs.

DL Cost = Image-pair cost︸ ︷︷ ︸
Convex

+ MDF-pair cost︸ ︷︷ ︸
Convex, Not interdependent

+Prior (‖wn−ww‖2)︸ ︷︷ ︸
Convex, Interdependent

. (5)

1 Properties of our DL deblurring Cost:
It is biconvex with respect to image-pair and MDF-pair (which aid convergence).

But, as MDFs are not interdependent, it admits relative MDF shifts.

2 The prior increases the Cost with relative MDF shifts.

3 Properties of our prior:
Convex, and thus retains the biconvexity (for convergence).

Allows for efficient LASSO optimization.

Reinforces camera motion estimation.
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A new prior for Unconstrained DL Motion Deblurring

The prior curbs the relative shifts among individual MDFs.

(a) True MDF (b) Without prior (c) With prior

  

With priorNarrow-angle images Wide-angle images

Without prior

TrueOm nama Sivaya

Om Nama Sivaya
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A practical algorithm for Unconstrained DL Deblurring

We show that a multi-lens deblurring problem can be:

1 divided into subproblems (with optimization dimension as that of single-lens);

2 instilled with the proposed prior and biconvexity property;

3 solved using alternating minimization for COR, depth, MDFs, and images.
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Representative Results

Our method outperforms SotA deep learning methods [9, 10] by 3.50 dB & 2.72 dB for
image and 4.39 dB & 4.36 dB for depth.

PSNR
Blur

W/o Prior W/o Prior W/ Prior W/ prior
(dB) W/o COR W/ COR W/o COR W/ COR

Image 22.39 25.69 26.59 27.28 28.88
Depth 28.33 23.35 23.59 29.12 30.52

Ablation study: The DL prior reduces the ill-posedness by a good margin (i.e., by 7 dB, as indicated in bold).

Real input 1 Output Real input 2 OutputMahesh Mohan M R, Sharath Girish, A N Rajagopalan (IPCV Lab, IIT Madras)Motion Deblurring for Dual-lens Cameras Indian Institute of Technology Madras



Conclusions

1 Introduced a motion blur model for unconstrained DL cameras.

2 Introduced an efficient prior to address the inherent ill-posedness in DL deblurring
that corrupts depth cues.

3 Introduced a practical algorithm for unconstrained DL deblurring.

Please find us at poster # 25. All are Welcome!
The first author gratefully acknowledges travel grant from .
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