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We begin by proving that the world-to-sensor mapping derived in Sec. 3.1, and thus our LF-MDF model, holds good in
general. This is followed by a discussion on the choice of our deconvolution method in EFF (Sec. S2), and analysis of
various aspects of our LF-BMD (Sec. S3). We then provide our implementation details in Sec. S4, and additional evaluations
in Sec. S5. Note that the sections, equations, and figures in the supplementary are numbered with a prefix ‘S’.
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(a) In Case 1 of Fig. 4: u′ < u0, Xs → + and x′s → − (b) In Case 1 of Fig. 4: u′ < u0, Xs → + and x′s → +
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(c) In Case 2 of Fig. 4: u′ < u0, Xs → − and x′s → + (d) In Case 3 of Fig. 4: u′ < u0, Xs → − and x′s → +

Figure S1. Different cases of world-to-sensor mapping for u ≤ u0 for a subaperture positioned at positive X axis. Note that these cases
are superimposed on the u > u0 cases shown in Fig. 4. (A symbol ′ is added to those variables representing u ≤ u0.)
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(a) Input (b) [9] (2X bicubic interpolated) (c) Direct approach (Gaussian prior)

(d) [5] (Hyper-Laplacian prior) (e) [6] (0.8 norm on gradient) (f) RL deconvolution [8]

Figure S2. Qualitative evaluation of different LF-EFF deconvolutions using a full-resolution LF. (a) Input, (b) LF-BMD result of [9] for
reference (2X bicubic-interpolated). (c) Direct approach using Gaussian prior, (d) Fast MAP estimation with hyper-Laplacian prior using
lookup table [5], (e) MAP estimation with heavy-tailed prior (α = 0.8) [6], and (f) Richarson Lucy deconvolution [8]. Note the ringing
artifacts in c in the saturated regions (e.g., in lights and door exit). RL deconvolution in f produces the best result with negligible artifacts.

Deconvolution
method

Direct
(Gaussian)

[5] (Fast hyper-
Laplacian)

[6] (0.8 norm
on gradients)

[8] RL deconv.

Time/SA image
(Full-res. LF)

1.1 second
(closed-form)

6.2 seconds
(lookup table)

55 seconds
(50 iters.)

80 seconds
(50 iters.)

Table S1. Time per subaperture (SA) image for different LF-EFF deconvolution methods for full-resolution LFs.

S1. World-to-Sensor Mapping for the case u ≤ u0

We showed in Sec. 3.1 that the three fundamental equations (Eqs. (7)-(9)) that we employed to derive world-to-sensor
mapping for a subaperture (and further for the MDF formulation) hold good for different cases of u > u0 (i.e., sensor plane
in front of the focal-plane of the lens). Here we show that those relations are also valid for u ≤ u0. In Fig. S1, we depict
various cases of u ≤ u0, superimposed on the u > u0 cases in Fig. 4. For distinguishing both cases, we have used a symbol
‘′’ to indicate variables of u ≤ u0 case (e.g., u′ indicates u). Eqs. (7) and (8) can be verified using the lens equation and
similarity of triangles ∆ABO and ∆ODC, respectively (as in Sec. 3.1). Similarity of ∆PG′S′ and ∆PQD gives

k − r
k − x′s

=
u0
u′

=⇒ x′s = r · u
′

u0
− k ·

(
u′

u0
− 1

)
, (S1)

which is same as Eq. (9). This shows that Eqs. (7)-(9) hold true in general for a subaperture positioned at positive X axis as
well; i.e., valid irrespective of the scene-point location and the sensor-plane placement (u > u0 or u ≤ u0). Due to symmetry
about the optical axis of ray diagrams, these relations are equally valid for subapertures positioned at negative X axis.

S2. Choice of LF-Deconvolution
In this section, we discuss our choice of deconvolution method employed to perform LF-EFF patch-wise deblurring in

Eq. (20). A nonblind LF-EFF deconvolution problem, i.e. estimation of a clean image patch given the blur kernel and blurred



(a) Input (b) Ours (Prior 0.005) (c) Ours (Prior 0.009) (d) Ours (Prior 0.05) (e) Srinivasan et al. [9]
≈ 17X gain with CPU ≈ 17X gain with CPU ≈ 17X gain with CPU GPU-based

Figure S3. Effect of prior in our LF-BMD (using dataset of [9]). (a) Input, (b) Ours with default smoothness regularization (SR) 0.005, (c)
Ours with SR 0.009, (d) Ours with SR 0.05, and (e) State-of-the-art [9] for reference. In e, notice the ringing artifacts in the upper leaves
and the suppressed veins of lower leaf (shown boxed). Our result with 0.05 prior is comparable to that of [9], yet with negligible ringing
artifacts. Moreover, ours is CPU-based and yet achieves a speed-up of atleast an order (≈ 17X) as compared to [9] which is GPU-based.

image patch, possesses multiple solutions due to zero crossings of filter response, saturation or noise effects, etc. Maximum
a posteriori (MAP) estimation which imposes prior(s) on clean image patch is typically employed to obtain a single solution
from the multiple solution space. A MAP estimation for nonblind deconvolution is given as

Î = deconv(h,B) = min
I
‖HI −B‖22 + ‖∇I‖α (S2)

where H captures the blur-kernel information, ∇ is the gradient operator, and B and I are blurred and latent image patches,
respectively. We considered four different deconvolution approaches: (a) A direct approach which considers Gaussian prior
(α = 2) and thus has a closed form solution, (b) A fast deconvolution using hyper-Laplacian prior (0.5 ≤ α ≤ 0.8) which is
solved using a lookup table [5], (c) A heavy-tailed prior (α = 0.8) which is solved using iterative reweighted least squares
process [6], and (d) RL deconvolution with smoothness prior which is solved using iterative process [8]. Figure S2 provides
a representative example of LF deblurring quality (using Fig. 8) with different approaches, and Table. S1 gives the average
time per subaperture image; it is evident that there exists a trade-off between visual quality and computational speed. In
terms of visual quality, we empirically found out that RL [8] is the best, and the direct method comes second but with ringing
artifacts (e.g., see Fig. S2(c)). In terms of computational time, the direct method is the most efficient, whereas RL (due to
its iterative approach) is less efficient. We have selected RL method due to its superior deblurring quality. However, direct
deblurring can be selected for computational efficiency, provided one can tolerate minor ringing artifacts.

S3. Analysis
We showed that our method produces comparable results with respect to the state-of-the-art (GPU-based) [9], yet with

significant computational gain even on CPU. Moreover, our method deblurs full-resolution LFs, unlike [9] which can process
only downsampled LFs. In this section, we consider the effect of noise in our LF-BMD and propound ways to suppress it,
and analyse the effect of adding more subaperture images (SAIs) to estimate the MDF (instead of one SAI that we followed).
Noise in LF-BMD: LF images captured in low-light scenarios possess higher level of shot noise as compared to that of an
analogous CC-camera (due to segregation of photons for angular resolution) [12]. As deblurring can be interpreted as enhanc-
ing the high-frequency content of the scene, LF-BMD also enhances the high-frequency noise (if present). As discussed in
Sec. 4.1, we consider the center subaperture image to estimate the common LF-MDF using [11]. State-of-the-art CC-BMDs
frame the objective function in image’s gradient space so as to reduce the ill-conditionness [3, 11]. Unlike the gradient of
scene features which form contiguous segments, the gradients of shot noise form isolated spikes. Harnessing this, we remove
the less-contiguous segments from image-gradient to form the objective function, which reduces the ill-effects of noise in
MDF-estimation. For nonblind deblurring (Sec. 4.2), we use the estimated MDF to obtain patch-wise kernels for individual
subaperture images (Eq. (19)), and perform deconvolution using [8]. In case of noisy images, we use a higher smoothness
prior (regularization of 0.05) for deconvolution to reduce the noise-effect in deblurred images. Our default regularization
value is 0.005. To show how noise can be handled as well as give comparison with [9] on Fig. 7 (which uses our default
setting), Fig. S3 provides the effect of varying regularization that clearly shows suppression of noise as the prior increases.
More SAIs to find MDF: Incorporating more SAIs does not produce any significant improvement in MDF, while accentuat-
ing the computational cost. MDF is estimated as ω̂λ = minωλ ‖HIkxy

ωλ −Bkxy‖2 + ‖ωλ‖0. For a maximum 30 pixel blur,



3D rotation space binned by 1 pixel is 293. Considering a single SAI (<1% data), the number of equations (or the number of
SAI pixels) will be 10X as that of the number of unknowns, which is already an overdetermined system (ODS) and sufficient
for MDF estimation [16,23]. Incorporating n more SAIs scales the number of equations by order of n (but the effect of more
ODS ≈ ODS), while incurring additional cost for creating individual His and handling large matrix (n His stacked).

S4. Implementation Details
System Specifications: We used a PC with an Intel Xeon processor and a 16 GB RAM for all CPU-based experiments, and
implemented our algorithm in MATLAB. The repeatedly used EFF routine is implemented in C for computational efficiency.
We perform nonblind deblurring of eight subaperture images in parallel. For executing the code of [9], we used a GPU-server
and employed a Pascal Titan X GPU. Running time reported in Table. 1 is obtained using these specifications. The camera
we used for obtaining full-resolution light field examples is LYTRO ILLUM 40 Megaray.
Parameters: We employed Lytro Desktop App to download LF raw images and [1] to decode raw images into LF Matlab
file. The camera parameters focal length f and lens-sensor separation u are obtained from Lytro metadata. As Lytro camera
has constant aperture setting as f/2, we periodically sampled 197 subapertures in a circular disk of the aperture dimension
to obtain kx and ky . We used camera metadata and a modified source code of [10] to produce discrete depth with respect to
the center subaperture image in individual patches (as discussed in Sec. 4.2).

The sensor coordinate x corresponding to a scene point varies with subaperture kxy due to parallax and lens effect (e.g.,
in Fig. S1, for the case of u > u0 the depth Zs of a scene point maps to sensor coordinate at R through the centre pinhole,
whereas shifted by RS through the shifted pinhole). As the depth estimate Z obtained using [10] is with respect to the center
subaperture image, it is required to map this to other non-centered subaperture images for retaining one-to-one correspon-
dence between x and Z (in Eq. 14). This we accomplished by warping the estimated depth (with coordinate x) to subaperture
kxy (with coordinate x′) as x′ = x− δxkx,y , where δxkx,y is derived using similarity of ∆DOP and ∆DRS in Fig. 4 or S1:

δxkx,y = k · u− u0
u0

. (S3)

where u0 is a function of Z. This relation even holds true for the case of u < u0 (which is verifiable using Fig. S1).
Development: Our algorithm comprises of two steps: blind deblurring of center subaperture image to estimate the common
MDF and project the estimated MDF to other subaperture images to perform nonblind deblurring (in parallel) employing EFF.
For the first step, as the MDF-based source code of the best CC-BMD [7] is not available and [13] provides only an executable
code, we used a modified code of [11] to incorporate LF parameters. For the scale-space based alternative minimization for
MDF and latent image, we used 5 scales with 6 iterations each. For all experiments, we used MDF regularization as 0.01
and total variation regularization as 0.005. For the second step, we implemented a C-based EFF code to obtain kernels
corresponding to the patch centers using Eq. (19), and employ RL as the deconvolution method in Eq. (20). A pseudo-code
is provided in algorithm 1.

Algorithm 1 Light field blind motion deblurring
Require: Decoded motion blurred LF file (LF ) (using [1])

Estimate patch-wise depth using [10] (following Sec. 5)
centerSAI ← LF (0, 0)
Estimate MDF using the centerSAI (employing [11])
for all SAIs (in parallel) do

Project blur in SAI patches using the estimated MDF (using Eq. (19))
Patch-wise deconvolution using the projected blur (using Eq. (20))
Merge individual patches using windowing operation (Sec. 4.2)

end for

S5. Additional Evaluations
We provide additional comparisons against the state-of-the-art [9] in Figs. S4-S5. Fig. S4-top provides synthetic experi-

ment results on datatset [1] using real handheld trajectory from [4]. Fig. S4(c)-top shows the result of [9] which is bicubic
interpolated to match the full-resolution LF. It is evident from the figure that the interpolation of low-resolution deblurred
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(a) Handheld traj. #1 [4] (b) ‘Lorikeet’ from dataset [1] (c) Ours (d) [9] (2X bicubic interp.)
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(e) Vibration traj. [2] (f) ‘Jarkanda’ from dataset [1] (g) Ours (h) [9] (2X bicubic interp.)

Figure S4. Synthetic experiments in dataset [1] using real handheld [4] and vibration [2] trajectories. (a,e) Trajectories, (b,f) Inputs, (c,g)
Ours, and (d,h) Bicubic interpolated result of [9]. Top-row gives a case of handheld trajectory. In d, note that the low-resolution result
of [9] after interpolation fails to recover intricate details (e.g., feathers in lorikeet’s face). Bottom-row gives a case of irregular motion.
Deblurring performance of [9] in h is quite low, possibly due to the inability of its parametric motion model in capturing vibratory motion.

(a) Input (c) Ours (e) Srinivasan et al. [9]

Figure S5. Additional real experiments. (a) Input, (b) Ours, and (c) State-of-the-art [9]. Top row gives a wide-angle scenario (of Fig. 8).
Bottom row shows an image of garage. Note that the state-of-the-art [9] cannot process a full-resolution LF due to computational consid-
erations, whereas ours performs full-resolution LF-BMD. Also, our method is CPU-based, unlike [9] which requires GPU.

image fails to recover intricate details (e.g., the feathers in lorikeet’s face), which further underscores the importance of per-
forming LF deblurring at its full-resolution. Fig. S4-bottom shows a case of irregular motion using vibration trajectory from



1(a) Input 1(b) Output 2(a) Input 2(b) Output

3(a) Input 3(b) Output 4(a) Input 4(b) Output

Figure S6. Four additional examples on full-resolution LFs ({433, 625, 15, 15}) captured using Lytro Illum. The first three examples
(1-3) depict normal hand-shake blurs, whereas the fourth example gives an example of heavy motion blur. Notice the consistent EPIs in all
examples. Also, patches are shown to highlight the deblurring performance.

[2]. Fig. S4(c)-bottom shows the result of [9], where the deblurring performance is inferior (possibly due to the inefficacy of
its parametric motion in capturing irregular trajectory). Fig. S5 shows two additional evaluations on real full-resolution LF
examples (top-row shows an outdoor wide-angle LF-image and bottom-row shows an indoor narrow-angle LF-image); and
Fig. S6 shows four more additional examples, which yet again proves the effectiveness of our proposed method.
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