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Abstract

The increasing popularity of computational light field

(LF) cameras has necessitated the need for tackling mo-

tion blur which is a ubiquitous phenomenon in hand-held

photography. The state-of-the-art method for blind deblur-

ring of LFs of general 3D scenes is limited to handling

only downsampled LF, both in spatial and angular resolu-

tion. This is due to the computational overhead involved

in processing data-hungry full-resolution 4D LF altogether.

Moreover, the method warrants high-end GPUs for opti-

mization and is ineffective for wide-angle settings and irreg-

ular camera motion. In this paper, we introduce a new blind

motion deblurring strategy for LFs which alleviates these

limitations significantly. Our model achieves this by isolat-

ing 4D LF motion blur across the 2D subaperture images,

thus paving the way for independent deblurring of these

subaperture images. Furthermore, our model accommo-

dates common camera motion parameterization across the

subaperture images. Consequently, blind deblurring of any

single subaperture image elegantly paves the way for cost-

effective non-blind deblurring of the other subaperture im-

ages. Our approach is CPU-efficient computationally and

can effectively deblur full-resolution LFs.

1. Introduction

Handheld light field cameras (LFCs) are being used in

a variety of tasks including wide-angle and hyperspectral

imaging, shape recovery, segmentation, etc. [4, 25, 14, 22].

Refer to [24] for a recent survey on light field (LF) related

works. The increase in popularity of LFCs can be attributed

to their attractive features over conventional cameras (CCs),

including post-capture refocusing, f-stopping, depth sens-

ing [22, 1, 16], etc. LFCs achieve this by capturing multiple

(subaperture) images instead of a single CC image by segre-

gating the light reaching the CC-sensor into multiple angu-

lar components; and synthesize these images post-capture

to form an image of desired CC setting [16, 1]. However,

there is a downside too. It is well-known that motion blur

is a common artifact in hand-held photography with CCs

[17, 26, 12]. This nuisance effect become exacerbated in

LFCs. This is because the light-segregation principle in

LFCs reduces the amount of photons that make up individ-

ual subaperture images, thereby necessitating higher expo-

sure times relative to CC (under the same setting). This es-

calates the risk of motion blur in LFC. Moreover, a 4D LF

comprising of 2D spatial and 2D angular resolutions can be

interpreted as several CC images stacked together. Thus the

numerical optimization involved in LF deblurring must deal

with very large-sized data as compared to that of CC. This

poses additional computational challenges [24, 20].

In this work, we address the problem of LF blind motion

deblurring (LF-BMD). The problem of BMD deals with es-

timating both the clean image and underlying camera mo-

tion from a single motion blurred observation. BMD in CCs

is a well-studied topic replete with efficient methodolgies.

State-of-the-art CC-BMD methods [17, 26, 21] are based

on the motion density function (MDF) [5] which allows

both narrow- and wide-angle systems as well as nonpara-

metric camera motion, have a homography-based filter flow

framework for computational efficiency [8], and employ a

scale-space approach to accommodate large blurs. Kohler et

al. [11] have shown (for CCs) that general camera motion

comprising of 3D translations and 3D rotations can be well

approximated by full rotations, or inplane translations and

inplane rotation. Inplane rotation common to both the ap-

proximations are necessary to capture wide angle settings

[15, 21]. Whyte et al. [23], Xu et al. [26], and Pan et al.

[17] follow full-rotations approximation and employ EFF

to yield high quality results in CC-BMD.

In contrast, LF-BMD is an emerging research area and

there exists very few works. Jin et al. [10] proposed the

first LF-BMD approach, but restrict the scene to be fronto-

parallel and bilayer, and limit the camera motion to only

inplane translations. A recent LF-BMD work by Srinivasan

et al. [20] eliminates the planar scene assumption and even

includes full 3D translations. However, the ego-motion is

constrained to be parametric. This reduces its effectiveness

under irregular ego-motions, which is common when imag-

ing from moving vehicles, robotic platforms, etc. More-

over, since the translational pose cannot model inplane ro-
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Figure 1. Outline of our proposed method. Our LF-BMD enables decomposing 4D LF deblurring problem into a set of independent 2D

deblurring sub-problems, in which a blind deblurring of a single subaperture-image enables low-cost non-blind deblurring of individual

subaperture images in parallel. Since all our sub-problems are 2D (akin to CC-case) and thus cost-effective (as it allows efficient filter flow

or EFF [8] and is CPU-sufficient), our method is able to handle full-resolution LFs, with significantly less computational cost.

tation, both [10] and [20] are ineffective for wide angle sys-

tems. Dansereau et al. [2] introduce a hardware-assisted de-

blurring approach using a robotic arm to mount the camera

and estimate camera motion (hence non-blind). To the best

of our knowledge, [20] is the only work which deals with

blind motion deblurring for general 3D scenes. Here, LFC

is modeled as an array of pinhole cameras by discarding the

effect of LFC-lens, and the motion blurred 4D LF is treated

as a composition of shifted and sheared versions of a clean

4D LF. Deblurring with this model proceeds by optimizing

for a clean 4D LF at ‘one go’, using a 4D prior [20].

However, [20] has some major drawbacks. First, opti-

mization of 4D LF in toto brings up new challenges. The

computational requirement involved in this optimization re-

stricts [20] to handle only downsampled LFs – both in spa-

tial and angular resolutions (e.g., a Lytro Illum LF file de-

coded using [3] has 197 subaperture images of size 433 ×
625, whereas [20] requires downsampling it to 64 images of

size 200 × 200 for computational feasibility). As LF post-

capture rendering involves composition of multiple sub-

aperture images (or angular components), angular down-

sampling can adversely affect rendering performance. On

the other hand, spatial downsampling restrics LF-rendering

software to produce only low-resolution RGB images. Fur-

thermore, optimizing high-dimensional data elevates the

computational complexity and the method warrants GPU-

based processing. Also, such a high-dimensional optimiza-

tion can distort the interrelations among subaperture images

due to convergence issues, which is an important factor for

consistent post-capture rendering of LFs [16].

In this paper, we introduce an MDF-based LF motion

blur model which allows for decomposition of LF-BMD

into low-dimensional subproblems. This admits an efficient

filter flow framework [8] to remove the computational bot-

tlenecks and several other limitations of the state-of-the-art

[20]. Specifically, our model isolates blur formation in in-

dividual subaperture images (unlike [20]), and imparts a de-

pendency among all subaperture images through a common

MDF. Our formulation performs LF-BMD in two efficient

steps, as illustrated in Fig. 1. First, we estimate the com-

mon MDF from the center-subaperture image using BMD

(akin to CC-BMD). Second, by invoking the blur-isolation

and commonality of MDF properties inherent to LFCs, we

perform independent (or parallelizable) non-blind deblur-

ring of individual subaperture images using the estimated

MDF while simulataneously accounting for the lens-effect

and parallax arising from separation of subapertures from

the lens-center. Since each of these subproblems is low-

dimensional, our method overcomes the drawbacks associ-

ated with the high-dimensional optimization, and thus can

deblur LFs at full-resolution [20]. In addition, unlike [20],

our LF-MDF model captures the effect of camera lens, can

cater to both wide- and narrow-angle camera settings, and

can handle irregular camera motions.

Our main contributions are summarized below.

• By harnessing the physics behind LF, we decompose

4D LF-BMD to 2D subproblems, which enables the

first ever attempt of full-resolution LF-BMD.

• Our work bridges the gap between the well-studied

CC-BMD and emerging LFC-BMD, and facilitates

mapping of analogous techniques (such as MDF for-

mulation, efficient filter flow framework, and scale-

space strategy) developed for the former to the later.

• Our work dispenses with some important limitations

impeding the state-of-the-art [20], such as high compu-

tational cost, GPU requirement, and ineffectiveness in

handling wide-angle systems & irregular ego-motions.
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Figure 2. LF motion blur model: (a) Formation of 4D LF. (b) Interpreting camera motion as relative world motion, each motion blurred

2D subaperture image is obtained as a combination of the projections of moving world (parametrized by an MDF) through the respective

subaperture onto a virtual sensor or microlens array. Also, all subapertures experience the same world motion (or share a common MDF).

2. MDF for Light Field

In this section, we discuss the working of LFC and lim-

itations of the LF motion blur model of [20]. We then

proceed to conceptualize (akin to conventional cameras) an

MDF based interpretation for motion blur in LFs, that seeks

to mitigate the drawbacks of [20].

A CC with a full-aperture setting spatially resolves light

onto a 2D sensor array. An LFC further segregates the light

in each CC sensor-element in accordance with the angu-

lar bin of the lens-aperture (or subaperture) through which

the light arrives. This is achieved by means of a microlens

placed in the position of each CC sensor element, which

resolves each spatial component into multiple angular com-

ponents, as shown in Fig. 2(a). The 2D spatially as well

as 2D angularly resolved light is stored in a high-resolution

LF-sensor (behind the microlens array) to form a 4D LF.

The LF motion blur model of [20] discards the effect

of LF-lens and approximates LFC as an array of pinhole

cameras positioned at the subapertures. The camera motion

is interpreted as an associated movement of these pinhole

cameras. In effect, a motion blurred LF is modeled as a

composition of shifted and sheared versions of the clean 4D

LF. Using flatland analysis (i.e., considering a single angu-

lar dimension u and a single spatial dimension x), a motion

blurred 4D LF (Lb) can be represented as

Lb(x, u) =

∫

t

Lc(x, u+ px(t)− xpz(t))dt, (1)

where Lc is the clean 4D LF and {px(t), pz(t)} is the cam-

era motion path during the exposure time. As only the angu-

lar term u is varying in Eq. (1), a motion blurred subaperture

image can be interpreted as a composition of multiple clean

subaperture images (where the amount depends on cam-

era motion). In the above equation, considering a single

blurred 2D subaperture image as the observation amounts

to solving for multiple clean 2D images as unknowns – a

heavily ill-posed problem. Instead, [20] considers the entire

blurred 4D LF as observation and solves for a clean 4D LF

as unknown. This reduces the ill-posedness but incurs high-

dimensional optimization issues, as discussed in Sec. 1.

We now briefly digress to discuss the MDF model em-

ployed in the state-of-the-art CC-BMD [17, 26, 23]. In this

model, the CC is approximated as a pinhole at lens-center,

and camera motion is interpreted as stationary camera but

with relative world motion (see Fig. 3). Considering full-

rotations approximation and a single pose change, the rela-

tive change in world coordinate is given as

X
′ = RX, (2)

where R is rotation matrix, and X = [X,Y, Z]T and X
′ =

[X ′, Y ′, Z ′]T are the 3D world coordinates with respect to

initial and final camera positions, respectively. There exists

a homography mapping h that relates the corresponding dis-

placement in image coordinates, i.e.,

x
′ = h(K,R,x), (3)

where K is the camera matrix, and x and x
′ are 2D image

coordinates corresponding to the initial and final camera po-

sitions, respectively. Resultantly, the final image I ′ can be

related to the initial image I as

I ′ = I (K,R) , (4)

where I(K,R) performs warping of image I in accordance

with Eq. (3). Thus a general motion blurred image B (i.e.,

camera that experiences multiple pose-changes over its ex-

posure time) can be expressed as

B =
∑

λ

ωλ · I(K,Rλ), (5)
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where Rλ spans the plausible camera pose-space and ωλ0

is the motion density function (MDF) which gives the frac-

tion of exposure time the camera stayed in the pose Rλ0

(Fig. 3-right). Note that the MDF completely characterizes

the camera-shake. State-of-the-art CC-BMD methods pro-

ceed by alternating minimization of ωλ and I in a scale-

space manner to accommodate large blurs (i.e., MDF esti-

mation starts with a downsampled blurred image where the

motion blur is less prominent, and proceeds to finer scale

MDF-estimation using the previous estimate).

Along similar lines, it is possible to conceptualize cam-

era shake in LFC to be uniquely characterised by an MDF,

but having one-to-many mapping from world to LF-sensor

due to LF-capture mechanism. To develop an analogous

MDF framework for LF-BMD, we introduce an alternative

interpretation of LF motion blur formation. The design of

LFC-lens system is such that light from different subaper-

tures do not interfere with each other [16]. As shown in

Fig. 2(b)-right, a clean subaperture image is equivalent to

a 2D image formed in a CC with full-aperture setting and

with only the respective subaperture open, the sensor being

placed at the position of the microlens-array.

Akin to CC, we too interpret motion to be stationary

camera and a world moving (see Fig. 2(b)). Each motion

blurred subaperture image is thus equivalent to an image

formed in a full-aperture CC with only the respective sub-

aperture open. Interestingly, note that all subapertures are

subjected to same world-motion (i.e., parameterized by a

single MDF). Intuitively, each motion blurred subaperture

image is formed by a linear combination of the projec-

tions of the moving world through the respective subaper-

ture onto a virtual sensor formed by the microlens array.

Thus, a blurred subaperture image Bi can be alternatively

expressed as

Bi =
∑

λ

ωλ · Ii(Ki, Rλ, γi) 1 ≤ i ≤ N, (6)

where Ii is the clean version of the ith subaperture image.

Note that the camera matix Ki and parameter set γi vary

with individual subapertures so as to capture one-to-many

world-mapping. Their exact forms will be discussed in a

later section. Our model isolates the blur in individual sub-

aperture images, i.e., a single 2D blurred subaperture im-

age as observation amounts to solving for the corresponding

clean subaperture image as unknown (unlike [20]). Also, a

single MDF ωλ is shared by all subaperture images.

The MDF-based LF motion blur model in Eq. (6) pro-

vides three distinct advantages. First, because it isolates

motion blur in individual subaperture images, we can es-

timate the common MDF from a single subaperture image

– a low-dimensional optimization (akin to CC-BMD). Sec-

ond, since all subaperture images share a common MDF,

we can use the estimated MDF to perform non-blind de-

Figure 3. Motion Density Function (MDF): Change in camera ori-

entation from A to B is equivalent to the relative change in world

coordinate system (CS) from X to X
′. Thus, MDF, which gives

the fraction of time the world CS stayed in different poses during

the exposure time, completely characterizes the camera motion.

blurring of all the other subaperture images. As non-blind

deblurring of individual subapertures can be done indepen-

dently, this step is amenable to parallelization. Note that

non-blind deblurring methods (which optimize for a clean

2D image only once) are quite cost-effective as compared

to blind methods (which cumbersomely optimize for MDF

and clean 2D image alternately over iterations). These fac-

tors drastically reduce the computational cost for LF-BMD

and allow full-resolution LF-BMD. Third, since MDF cap-

tures both regular and irregular ego-motion, our method can

handle unconstrained ego-motion; and consideration of full

rotational camera motion accommodates both narrow- and

wide-angle systems, unlike [20, 10].

3. MDF-based LF Motion Blur Model

In this section, we formulate our MDF-based LF motion

blur model. This requires world-to-sensor mapping in each

subaperture, so as to derive individual LF homographies.

3.1. WorldtoSensor Mapping in a Subaperture

Conventional cameras with a small-aperture setting can

be well-approximated by a pinhole centered at the aper-

ture’s center. This approximation is widely used in many

practical applications (including CC-BMD) [6, 17, 26]. In

LFCs, the characteristics of light refraction over different

subapertures vary in accordance with their positions due to

the effect of large-aperture lens. This effect cannot be cap-

tured with a pinhole array (as the main lens is not involved);

e.g., a beam of parallel rays through LFC-lens converge at

the focal point, but will pass parallel through a pinhole cam-

era array. To account for this effect, we approximate sub-

apertures as pinholes over subaperture-centers, and yet con-

figured to obey the refractions incurred at that portion.

Fig. 4(a) shows a flatland ray tracing model for a sub-

aperture positioned above the optical-center and a world

point with positive X coordinate. Following the thin-lens

equation with focal length f , a light-ray from a world point

{Xs, Ys, Zs} through the subaperture has to pass through

the point of intersection of the principal ray (i.e., a ray
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Figure 4. Different cases of world-to-sensor mapping for a subaperture positioned at positive X axis. The same relations hold good even

for subapertures positioned at negative X axis due to symmetry about optical axis. (Variables having negative values are marked with (−))

through the optical center) and a fronto-parallel plane at a

distance u0 from the optical center, where u0 is given by

1

u0

+
1

|Zs|
=

1

f
=⇒ u0 =

f |Zs|

|Zs| − f
. (7)

Note that world coordinate Zs is negative according to our

convention (i.e., |Zs| = −Zs). From Fig. 4(a), similarity of

triangles ∆ABO and ∆ODC gives

r

Xs

=
u0

Zs

=⇒ r =
u0Xs

Zs

. (8)

From similarity of ∆PQD and ∆PGS, we get

k − r

k − xs

=
u0

u
=⇒ xs = r ·

u

u0

− k ·

(
u

u0

− 1

)
. (9)

Figs. 4(b-c) illustrate cases of the same subaperture but with

world point having negative X coordinate. It can be veri-

fied that Eqs. (7)-(9) are quite general and hold good for

this situation as well, and also for the case where u0 > u
(please refer to supplementary). Moreover, (due to symme-

try about the optical axis) these equations are valid even for

subapertures positioned below the lens-center. Substituting

in Eq. (9), u0 and r from Eqs. (7)-(8) yields

xs =
uXs

Zs

− k ·

(
u

f |Zs|
· (|Zs| − f)− 1

)
,

=
uXs

Zs

− k

(
u

f
− 1

)
−

ku

Zs

, ∵ |Zs| = −Zs.

(10)

The flatland analysis of Eq. (10) can be extended to 3D

world coordinate system and a 2D sensor plane as



x
y
1


 =

1

Z



u 0 kx(f − u)/f
0 u ky(f − u)/f
0 0 1





X
Y
Z


−

1

Z



kxu
kyu
0


 ,

(11)

where we have dropped the subscript s for brevity, and kx
and ky are the distances of subaperture from the optical-

center in x and y directions, respectively. Representing

[x, y, 1]T as x, [X,Y, Z] as X, the matrix as Kkxy
, and the

vector as bkxy
, Eq. (11) can be concisely represented as

x =
1

Z
· (Kkxy

X− bkxy
), (12)

where subscript kxy represents individual subapertures in

accordance with their separations kx and ky . Note that the

matrix Kkxy
is of full rank or invertible.

3.2. Homographies for LFC blur

In this section, we develop homography transformation

for a single camera pose-change and then extend it to our

MDF-based blur model. As in Eq. (2), consider a single

world coordinate change from X to X
′ as

X
′ = RX. (13)

Using world-sensor mapping in Eq. (12), the mapping of

sensor coordinate from x to x
′ (corresponding to the world

coordinate mapping from X to X
′) is given by

Z ′ ·K−1

kxy
x
′ +K−1

kxy
bkxy

= Z ·RK−1

kxy
x+RK−1

kxy
bkxy

or x′ =
1

Z ′

(
ZKkxy

RK−1

kxy
x+ (Kkxy

RK−1

kxy
− I)bkxy

)

(14)

which gives the homography mapping for subaperture kxy .

From Eqs. (6)&(14), the parameter set γi comprises of bi

and scene depth, to capture the parallax and lens effects.

Considering multiple pose-changes, we can represent the

motion-blurred subaperture image Bkxy
as

Bkxy
=
∑

λ

ωλ · Ikxy
(Kkxy

, Rλ, γkxy
), (15)

where Ikxy
(·) performs the warping function according to

Eq. (14) and MDF ωλ0
represents the fraction of time the

world stayed in rotational pose Rλ0
. Note that the MDF ωλ

is shared among all the subapertures.
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We also throw light on the possibility of individually

deblurring subaperture images using CC-BMD. Assuming

Kkxy
= K ∀kxy and neglecting γkxy

necessitates different

MDFs for capturing the one-to-many mapping of LF. This

distorts their mutual consistencies (e.g., see epipolar image

or EPI of Figs. 7(d-e)), mainly due to shift-ambiguity of la-

tent image-MDF pair [15], and relative estimation-error of

different MDFs. This adversely affects the refocusing and f-

stopping functionality of LFs [16]. Furthermore, since blind

deblurring is very costlier than non-blind, the computational

cost climbs steeply with spatial and angular resolutions.

4. Optimization of LF-BMD

In this section, we discuss our LF-BMD approach that

comprises of two steps: First, estimate the common MDF

from a single subaperture image using BMD, and second,

employ the estimated MDF to perform low-cost non-blind

deblurring of remaining subaperture images (in parallel).

4.1. LFMDF Estimation

The homography mapping of the center-subaperture im-

age (i.e., kx = ky = 0 in Eq. (14)) is equivalent to that of a

CC-pinhole model [6], i.e.,

x
′ = λ ·KRK−1

x ∵ Kkxy
= K and bkxy

= 0, (16)

where scalar λ (= Z/Z ′) normalizes the third coordinate of

x
′ to unity (Eq. (11)). Note that even though depths Z and

Z ′ are present in Eq. (16), it is not required for homography

mapping (and thus for MDF estimation) since it translates

to a normalization of the third coordinate of x′ to unity (see

structure of x in Eq. (11)) through λ [6, 17, 26, 23]. Thus,

any state-of-the-art CC-BMD method can be employed to

find the LF-MDF using the center-subaperture image.

4.2. EFF for NonBlind Deblurring of LFs

Since a common MDF is shared among all subaper-

ture images, we utilize the estimated MDF to perform non-

blind deblurring of individual subaperture images. For a

non-centered subaperture, camera matrix Kkxy
varies with

subaperture positions and the additive term of Eq. (14) is

nonzero (which makes it different from the CC-pinhole

case). Eventhough 1/Z ′ in Eq. (14) can be obtained by

normalization (as in CC-case), the depth information Z is

required for homography mapping to capture parallax and

lens effect. A direct approach for non-blind deblurring in-

volves constructing a large matrix Mkxy using the MDF for-

mulation of Eq. (15) for each subaperture kxy , to solve the

optimization problem

ˆIkxy
= min

Ikxy

‖Mkxy
Ikxy

−Bkxy
‖2
2
+ prior(Ikxy

), (17)

where ‘prior’ is an image regularizer, such as total variation

(TV), sparsity in image gradient [26], dark channel [26],

etc. As a full-resolution LF is composed of numerous sub-

aperture images, construction of Mkxy and optimization of

individual subaperture images with priors are computation-

ally expensive. To this end, we elegantly extend the efficient

filter flow (EFF) employed in CCs [8] to LFCs.

The EFF approximates space-variant blur in an image to

be locally space-invariant over small image patches. Using

this approximation, we can simplify the blurring process in

a subaperture image as

Bkxy
=

R∑

i=1

C
†
i
·
{
hi
kxy

∗ (Ci · Ikxy
)
}
, (18)

where i iterates over R overlapping patches in clean sub-

aperture image Ikxy
, Ci · I is a linear operation which ex-

tracts the ith patch from I , (h ∗ Ci · I) performs a convo-

lution with kernel h on ith patch, and C
†
i

inserts the patch

back to its original position with a Barlett windowing oper-

ation. The convolution kernel hi
kxy

corresponding to the ith
patch center can be derived using Eq. (15) as

hi
kxy

= Ci ·

(
∑

λ

ωλ · δi(Kkxy
, Rλ, γkxy

)

)
, (19)

where δi is an image of the same size as that of the sub-

aperture image with only an impulse located at the ith patch

center. EFF requires MDF-based motion blur model to be

calculated only at patch centers and eliminates the need for

building large matrices for optimization, as in Eq. (17). The

EFF allows for an efficient patch-based deblurring:

ˆIkxy
=

R∑

i=1

C
†
i
· deconv

(
hi
kxy

, (Ci ·Bkxy
)
)
, (20)

where ‘deconv’ indicates non-blind deconvolution which is

computationally efficient as compared to blind deblurring.

5. Analysis and Discussions

In this section, we elaborate on the validity of rotation-

only approximation in LF-BMD, and depth estimation.

Rotation-only approximation: To reduce the number of

unknowns in MDF, CC-BMD methods typically approx-

imate full 6D motion to 3D [17, 23]. As the effect of

translation is negligible for normal camera-shakes [23],

3D rotation-only approximation is commonly employed in

CCs. We show that this is valid for LFCs too. Consid-

ering the worst-case (WC) plausible camera translation as

T̂ = [|r|, |r|, |r|], [23] shows for CC that the correspond-

ing WC pixel translation t = [tx, ty, tz] = K0T̂ /Z
′ can be

ignored (K0 = diag(u, u, 1)). We claim that pixel trans-

lations in our LFC-model is equivalent to that of CC for

inplane translations, and approximates t for 3D T̂ . Consid-

ering X
′ = RX+ T in Eq. (13), T in SA i (using Eq. (14))
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Clean and blurred LF using trajectory 1 of [11], defocus and correspondence cues [22]           
Figure 5. Evaluation of depth estimation cues.
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 State-of-the-art on low-res. LF - ''
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(a) LF-version of IFC [19] (b) LF-version of VIF [18]

Figure 6. Quantitative evaluation for wide-angle setting (f = 29
mm) using real hand-held trajectories (from [11]) and irregular

camera motion using vibration trajectory (from [7]).

amounts to t̂ = KiT/Z
′ = (K0 +Mi)T/Z

′, where Mi =
[0, 0, kx(f−u)/f ; 0, 0, ky(f−u)/f, 0; 0, 0, 0]. For Tz = 0,

MiT/Z
′ = 0 (equal effect in CC & LFC). Note that WC

displacement happens for highest kx or ky (= f/4). For 3D

T̂ , LFC t̂ = [αtx, αty, tz], where α = 1 + |(f − u)/4u| or

1 + |f |/(4|Z ′|) (using Eq. (7)). As |Z ′| is in the order of m

and |f | in mm, 1 ≈ α < 2 (i.e. t̂ ≈ t). Hence proved.

Depth Estimation: To estimate the convolution kernels for

different SAIs (for EFF), our algorithm requires depth in-

formation (γ in Eq. (19)). We use [22] to estimate depth

for each patch by picking the most-confident depth estimate

within that patch (without final depth refinement). Our con-

sideration of uniform depth within a small image patch is

analogous to the flatness and global smoothness priors com-

monly used for final depth-refinement [22, 9]. Depth esti-

mation method in [22] is as follows. Refocusing LF trans-

lates to a skew in EPI, and the features of EPIs for a image

point will be vertical (or horizontal depending on projec-

tion) when it is at focus [16]. [22] skews EPIs correspond-

ing to different depths, and picks among them the depth

which makes EPIs vertical. Motion blurred LFs also pos-

sess EPI characteristics required for depth estimation (com-

pare EPIs in Figs. 7-8(a) and depth cues in Fig. 5).

6. Experimental Results

In this section, we provide quantitative and qualitative

evaluations to highlight the computational gain of our ap-

proach and its ability to deal with full-resolution LFs with

competitive performance. We also show that our method

can deal with both wide-angle systems and irregular cam-

era trajectories, unlike the state-of-the-art LF-BMD [20].

Datasets used: For real experiments on low-resolution LFs,

we used the motion blurred LF dataset of [20]. Since there

exist no full-resolution motion blur LF-datasets, we create

one with LFs captured using Lytro Illum, and decoded

raw-LFs to MATLAB format full-resolution LFs using [4].

LF-resolution State-of-the-art [20] Ours

{x, y, u, v} (GPU-based) (CPU-based)

{200, 200, 8, 8} 2 hrs, 20 mins 8.21 mins

(Dataset of [20]) (Gain 17.05×)

{200, 289, 8, 8} 3 hrs, 17 mins 12.62 mins

(Low-res. LF) (Gain 15.61×)

{433, 625, 15, 15} Not feasible 38 mins∗

(Full-res. LF) (Resource allocation error) (Feasible)

Table 1. Time comparisons. *Over 90% of the time is used for low-

cost 197 non-blind deblurring parallelized in 8 cores of a CPU.

Using more cores or GPU further improves the speed significantly.

For quantitative evaluation, we synthesized motion blur on

clean full-resolution LFs using real handheld trajectories

from [11] with 29 mm focal-length (wide-angle setting) and

1/50 s exposure time. For irregular motion, we used real vi-

bratory ego-motion trajectory from [7].

Comparison methods: We consider mainly the current

state-of-the-art LF-BMD [20] for evaluation. To demon-

strate the ineffectiveness of CC methods on LFs, we also use

state-of-the-art CC-BMD methods [12] and [17] to perform

independent deblurring on individual subaperture images.

The codes for [20, 17] and [12] are downloaded from the

authors’ website, and used their default parameters for all

methods. Additional analysis, comparisons, and implemen-

tation details are provided in our supplemental material.

Quantitative Evaluation: We introduce an LF-version of

information fidelity criterion (IFC) [19] and visual informa-

tion fidelity (VIF) [18], which are shown to be the best met-

rics for BMD evaluation in [13], by averaging these metric

over subaperture images. As processing full-resolution LFs

using [20] is not feasible, we use a downsampled version

(by ≈ 0.5) of our dataset to perform comparisons with [20].

Using IFC/VIF, Figs. 6(a-b) compare with [20] for wide-

angle scenario (using real trajectories of [11]) and irregular

camera motion (using [7]). It is evident from Fig. 6 that

our method performs better than [20] (performance degra-

dation of [20] may be attributed to its inability to model

these scenarios); ours can also deblur full-resolution LFs

(unlike [20]). Table. 1 gives the timing comparisons with

the state-of-the-art [20]. It is evident that, even though our

method uses only CPU, we achieve a gain of atleast an order

relative to the GPU-based [20]. Also, our method performs

full-resolution LF-BMD within three-quarters of an hour,

which can be further improved using more cores or GPUs.

Qualitative Evaluation: We qualitatively evaluate our de-

blurring performance on real LFs. Fig. 7 gives an exam-

ple of low-resolution LF. Note that the EPIs of [20], [12]

and [17] are not consistent with the input. Also, there ex-

ists ringing artifacts in Fig. 7(c) of [20] (especially in upper

leaves). In contrast, our result in Fig. 7(b) reveals intricate
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(a) Input (b) Ours (c) Srinivasan et al. [20] (d) Krishnan et al. [12] (e) Pan et al. [17]

Figure 7. Comparison using low-resolution LF ({200, 200, 8, 8}) from dataset of [20]. (a) Input, (b) Ours, (c) State-of-the-art LF-BMD

[20], (d) State-of-the-art CC-BMD [12] (e) State-of-the-art CC-BMD [17]. Note the inconsistencies in EPI w.r.t input for c (possibly due to

convergence issues) and d-e (possibly due to lack of dependency among BMD of subaperture images). Also, notice the ringing artifacts in

the upper leaves in c. In contrast, ours reveals more details (like veins of lower leaf), has negligible ringing artifacts, and EPI is consistent.

(a) Input (b) Ours (c) Srinivasan et al. [20] (d) Pan et al. [17]

Figure 8. Comparisons using full-resolution LF ({433, 625, 15, 15}) of Lytro Illum. Top-row shows a well-lit case and bottom row

shows a low-light scenario. (a) Input, (b) Ours, (c) State-of-the-art LF-BMD [20] and (d) State-of-the-art CC-BMD [17]. [20] can only

deblur downsampled LF due to computational constraints. Ours produce a superior full-resolution LF with consistent EPIs in all cases.

details (see the veins in lower leaf), has negligible ringing

artifacts and produces consistent EPIs. Since this example

is captured using low-light setting, noise is present in the

input as well as our output. A detailed analysis to tackle

noise in LF-BMD is presented in our supplementary. Fig. 8

shows comparisons with real full-resolution LFs, where the

top and bottom rows depict well-lit and low-lit scenarios,

respectively. The LF-BMD of [20] processes only a down-

sampled LF (both spatially and angularly) due to computa-

tional constraints. In contrast, the proposed method gives

superior results in full-resolution and with consistent EPIs.

7. Conclusions

We introduced a novel interpretation of motion blur in

4D LF as independent blurring of multiple 2D images, yet

all sharing a common motion parametrization. This paved

the way for performing LF deblurring as a single 2D blind

deblurring (to estimate the common motion) and paralleliz-

able low-cost 2D non-blind deblurring of multiple images.

Our approach overcomes several major drawbacks of the

state-of-the-art, such as heavy computational cost, ability to

deblur only low-resolution LFs, and GPU-processing. Un-

like the state-of-the-art, our model realistically captures re-

fraction effects of lens, and works for wide-angle scenarios

and irregular ego-motion as well. As LF cameras continue

to evolve with higher resolutions, our divide and conquer

strategy will be invaluable for full-resolution deblurring.
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Divide and Conquer for Full-Resolution Light Field Deblurring
(Supplementary Material)
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We begin by proving that the world-to-sensor mapping derived in Sec. 3.1, and thus our LF-MDF model, holds good in
general. This is followed by a discussion on the choice of our deconvolution method in EFF (Sec. S2), and analysis of
various aspects of our LF-BMD (Sec. S3). We then provide our implementation details in Sec. S4, and additional evaluations
in Sec. S5. Note that the sections, equations, and figures in the supplementary are numbered with a prefix ‘S’.
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Figure S1. Different cases of world-to-sensor mapping for u ≤ u0 for a subaperture positioned at positive X axis. Note that these cases
are superimposed on the u > u0 cases shown in Fig. 4. (A symbol ′ is added to those variables representing u ≤ u0.)
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(a) Input (b) [9] (2X bicubic interpolated) (c) Direct approach (Gaussian prior)

(d) [5] (Hyper-Laplacian prior) (e) [6] (0.8 norm on gradient) (f) RL deconvolution [8]

Figure S2. Qualitative evaluation of different LF-EFF deconvolutions using a full-resolution LF. (a) Input, (b) LF-BMD result of [9] for
reference (2X bicubic-interpolated). (c) Direct approach using Gaussian prior, (d) Fast MAP estimation with hyper-Laplacian prior using
lookup table [5], (e) MAP estimation with heavy-tailed prior (α = 0.8) [6], and (f) Richarson Lucy deconvolution [8]. Note the ringing
artifacts in c in the saturated regions (e.g., in lights and door exit). RL deconvolution in f produces the best result with negligible artifacts.

Deconvolution
method

Direct
(Gaussian)

[5] (Fast hyper-
Laplacian)

[6] (0.8 norm
on gradients)

[8] RL deconv.

Time/SA image
(Full-res. LF)

1.1 second
(closed-form)

6.2 seconds
(lookup table)

55 seconds
(50 iters.)

80 seconds
(50 iters.)

Table S1. Time per subaperture (SA) image for different LF-EFF deconvolution methods for full-resolution LFs.

S1. World-to-Sensor Mapping for the case u ≤ u0

We showed in Sec. 3.1 that the three fundamental equations (Eqs. (7)-(9)) that we employed to derive world-to-sensor
mapping for a subaperture (and further for the MDF formulation) hold good for different cases of u > u0 (i.e., sensor plane
in front of the focal-plane of the lens). Here we show that those relations are also valid for u ≤ u0. In Fig. S1, we depict
various cases of u ≤ u0, superimposed on the u > u0 cases in Fig. 4. For distinguishing both cases, we have used a symbol
‘′’ to indicate variables of u ≤ u0 case (e.g., u′ indicates u). Eqs. (7) and (8) can be verified using the lens equation and
similarity of triangles ∆ABO and ∆ODC, respectively (as in Sec. 3.1). Similarity of ∆PG′S′ and ∆PQD gives

k − r
k − x′s

=
u0
u′

=⇒ x′s = r · u
′

u0
− k ·

(
u′

u0
− 1

)
, (S1)

which is same as Eq. (9). This shows that Eqs. (7)-(9) hold true in general for a subaperture positioned at positive X axis as
well; i.e., valid irrespective of the scene-point location and the sensor-plane placement (u > u0 or u ≤ u0). Due to symmetry
about the optical axis of ray diagrams, these relations are equally valid for subapertures positioned at negative X axis.

S2. Choice of LF-Deconvolution
In this section, we discuss our choice of deconvolution method employed to perform LF-EFF patch-wise deblurring in

Eq. (20). A nonblind LF-EFF deconvolution problem, i.e. estimation of a clean image patch given the blur kernel and blurred



(a) Input (b) Ours (Prior 0.005) (c) Ours (Prior 0.009) (d) Ours (Prior 0.05) (e) Srinivasan et al. [9]
≈ 17X gain with CPU ≈ 17X gain with CPU ≈ 17X gain with CPU GPU-based

Figure S3. Effect of prior in our LF-BMD (using dataset of [9]). (a) Input, (b) Ours with default smoothness regularization (SR) 0.005, (c)
Ours with SR 0.009, (d) Ours with SR 0.05, and (e) State-of-the-art [9] for reference. In e, notice the ringing artifacts in the upper leaves
and the suppressed veins of lower leaf (shown boxed). Our result with 0.05 prior is comparable to that of [9], yet with negligible ringing
artifacts. Moreover, ours is CPU-based and yet achieves a speed-up of atleast an order (≈ 17X) as compared to [9] which is GPU-based.

image patch, possesses multiple solutions due to zero crossings of filter response, saturation or noise effects, etc. Maximum
a posteriori (MAP) estimation which imposes prior(s) on clean image patch is typically employed to obtain a single solution
from the multiple solution space. A MAP estimation for nonblind deconvolution is given as

Î = deconv(h,B) = min
I
‖HI −B‖22 + ‖∇I‖α (S2)

where H captures the blur-kernel information, ∇ is the gradient operator, and B and I are blurred and latent image patches,
respectively. We considered four different deconvolution approaches: (a) A direct approach which considers Gaussian prior
(α = 2) and thus has a closed form solution, (b) A fast deconvolution using hyper-Laplacian prior (0.5 ≤ α ≤ 0.8) which is
solved using a lookup table [5], (c) A heavy-tailed prior (α = 0.8) which is solved using iterative reweighted least squares
process [6], and (d) RL deconvolution with smoothness prior which is solved using iterative process [8]. Figure S2 provides
a representative example of LF deblurring quality (using Fig. 8) with different approaches, and Table. S1 gives the average
time per subaperture image; it is evident that there exists a trade-off between visual quality and computational speed. In
terms of visual quality, we empirically found out that RL [8] is the best, and the direct method comes second but with ringing
artifacts (e.g., see Fig. S2(c)). In terms of computational time, the direct method is the most efficient, whereas RL (due to
its iterative approach) is less efficient. We have selected RL method due to its superior deblurring quality. However, direct
deblurring can be selected for computational efficiency, provided one can tolerate minor ringing artifacts.

S3. Analysis
We showed that our method produces comparable results with respect to the state-of-the-art (GPU-based) [9], yet with

significant computational gain even on CPU. Moreover, our method deblurs full-resolution LFs, unlike [9] which can process
only downsampled LFs. In this section, we consider the effect of noise in our LF-BMD and propound ways to suppress it,
and analyse the effect of adding more subaperture images (SAIs) to estimate the MDF (instead of one SAI that we followed).
Noise in LF-BMD: LF images captured in low-light scenarios possess higher level of shot noise as compared to that of an
analogous CC-camera (due to segregation of photons for angular resolution) [12]. As deblurring can be interpreted as enhanc-
ing the high-frequency content of the scene, LF-BMD also enhances the high-frequency noise (if present). As discussed in
Sec. 4.1, we consider the center subaperture image to estimate the common LF-MDF using [11]. State-of-the-art CC-BMDs
frame the objective function in image’s gradient space so as to reduce the ill-conditionness [3, 11]. Unlike the gradient of
scene features which form contiguous segments, the gradients of shot noise form isolated spikes. Harnessing this, we remove
the less-contiguous segments from image-gradient to form the objective function, which reduces the ill-effects of noise in
MDF-estimation. For nonblind deblurring (Sec. 4.2), we use the estimated MDF to obtain patch-wise kernels for individual
subaperture images (Eq. (19)), and perform deconvolution using [8]. In case of noisy images, we use a higher smoothness
prior (regularization of 0.05) for deconvolution to reduce the noise-effect in deblurred images. Our default regularization
value is 0.005. To show how noise can be handled as well as give comparison with [9] on Fig. 7 (which uses our default
setting), Fig. S3 provides the effect of varying regularization that clearly shows suppression of noise as the prior increases.
More SAIs to find MDF: Incorporating more SAIs does not produce any significant improvement in MDF, while accentuat-
ing the computational cost. MDF is estimated as ω̂λ = minωλ ‖HIkxy

ωλ −Bkxy‖2 + ‖ωλ‖0. For a maximum 30 pixel blur,



3D rotation space binned by 1 pixel is 293. Considering a single SAI (<1% data), the number of equations (or the number of
SAI pixels) will be 10X as that of the number of unknowns, which is already an overdetermined system (ODS) and sufficient
for MDF estimation [16,23]. Incorporating n more SAIs scales the number of equations by order of n (but the effect of more
ODS ≈ ODS), while incurring additional cost for creating individual His and handling large matrix (n His stacked).

S4. Implementation Details
System Specifications: We used a PC with an Intel Xeon processor and a 16 GB RAM for all CPU-based experiments, and
implemented our algorithm in MATLAB. The repeatedly used EFF routine is implemented in C for computational efficiency.
We perform nonblind deblurring of eight subaperture images in parallel. For executing the code of [9], we used a GPU-server
and employed a Pascal Titan X GPU. Running time reported in Table. 1 is obtained using these specifications. The camera
we used for obtaining full-resolution light field examples is LYTRO ILLUM 40 Megaray.
Parameters: We employed Lytro Desktop App to download LF raw images and [1] to decode raw images into LF Matlab
file. The camera parameters focal length f and lens-sensor separation u are obtained from Lytro metadata. As Lytro camera
has constant aperture setting as f/2, we periodically sampled 197 subapertures in a circular disk of the aperture dimension
to obtain kx and ky . We used camera metadata and a modified source code of [10] to produce discrete depth with respect to
the center subaperture image in individual patches (as discussed in Sec. 4.2).

The sensor coordinate x corresponding to a scene point varies with subaperture kxy due to parallax and lens effect (e.g.,
in Fig. S1, for the case of u > u0 the depth Zs of a scene point maps to sensor coordinate at R through the centre pinhole,
whereas shifted by RS through the shifted pinhole). As the depth estimate Z obtained using [10] is with respect to the center
subaperture image, it is required to map this to other non-centered subaperture images for retaining one-to-one correspon-
dence between x and Z (in Eq. 14). This we accomplished by warping the estimated depth (with coordinate x) to subaperture
kxy (with coordinate x′) as x′ = x− δxkx,y , where δxkx,y is derived using similarity of ∆DOP and ∆DRS in Fig. 4 or S1:

δxkx,y = k · u− u0
u0

. (S3)

where u0 is a function of Z. This relation even holds true for the case of u < u0 (which is verifiable using Fig. S1).
Development: Our algorithm comprises of two steps: blind deblurring of center subaperture image to estimate the common
MDF and project the estimated MDF to other subaperture images to perform nonblind deblurring (in parallel) employing EFF.
For the first step, as the MDF-based source code of the best CC-BMD [7] is not available and [13] provides only an executable
code, we used a modified code of [11] to incorporate LF parameters. For the scale-space based alternative minimization for
MDF and latent image, we used 5 scales with 6 iterations each. For all experiments, we used MDF regularization as 0.01
and total variation regularization as 0.005. For the second step, we implemented a C-based EFF code to obtain kernels
corresponding to the patch centers using Eq. (19), and employ RL as the deconvolution method in Eq. (20). A pseudo-code
is provided in algorithm 1.

Algorithm 1 Light field blind motion deblurring
Require: Decoded motion blurred LF file (LF ) (using [1])

Estimate patch-wise depth using [10] (following Sec. 5)
centerSAI ← LF (0, 0)
Estimate MDF using the centerSAI (employing [11])
for all SAIs (in parallel) do

Project blur in SAI patches using the estimated MDF (using Eq. (19))
Patch-wise deconvolution using the projected blur (using Eq. (20))
Merge individual patches using windowing operation (Sec. 4.2)

end for

S5. Additional Evaluations
We provide additional comparisons against the state-of-the-art [9] in Figs. S4-S5. Fig. S4-top provides synthetic experi-

ment results on datatset [1] using real handheld trajectory from [4]. Fig. S4(c)-top shows the result of [9] which is bicubic
interpolated to match the full-resolution LF. It is evident from the figure that the interpolation of low-resolution deblurred
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Figure S4. Synthetic experiments in dataset [1] using real handheld [4] and vibration [2] trajectories. (a,e) Trajectories, (b,f) Inputs, (c,g)
Ours, and (d,h) Bicubic interpolated result of [9]. Top-row gives a case of handheld trajectory. In d, note that the low-resolution result
of [9] after interpolation fails to recover intricate details (e.g., feathers in lorikeet’s face). Bottom-row gives a case of irregular motion.
Deblurring performance of [9] in h is quite low, possibly due to the inability of its parametric motion model in capturing vibratory motion.

(a) Input (c) Ours (e) Srinivasan et al. [9]

Figure S5. Additional real experiments. (a) Input, (b) Ours, and (c) State-of-the-art [9]. Top row gives a wide-angle scenario (of Fig. 8).
Bottom row shows an image of garage. Note that the state-of-the-art [9] cannot process a full-resolution LF due to computational consid-
erations, whereas ours performs full-resolution LF-BMD. Also, our method is CPU-based, unlike [9] which requires GPU.

image fails to recover intricate details (e.g., the feathers in lorikeet’s face), which further underscores the importance of per-
forming LF deblurring at its full-resolution. Fig. S4-bottom shows a case of irregular motion using vibration trajectory from
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Figure S6. Four additional examples on full-resolution LFs ({433, 625, 15, 15}) captured using Lytro Illum. The first three examples
(1-3) depict normal hand-shake blurs, whereas the fourth example gives an example of heavy motion blur. Notice the consistent EPIs in all
examples. Also, patches are shown to highlight the deblurring performance.

[2]. Fig. S4(c)-bottom shows the result of [9], where the deblurring performance is inferior (possibly due to the inefficacy of
its parametric motion in capturing irregular trajectory). Fig. S5 shows two additional evaluations on real full-resolution LF
examples (top-row shows an outdoor wide-angle LF-image and bottom-row shows an indoor narrow-angle LF-image); and
Fig. S6 shows four more additional examples, which yet again proves the effectiveness of our proposed method.
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