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Intro to Xtreme Multi-Label
Classification (XMC)
The objective in extreme multi-label learning is to train a classifier that can
automatically tag a novel data point with the most relevant subset of labels
from an extremely large label set. 

There are several real world application to this task and for major corporate
business such as:
Amazon: Automatically tags a new product like "Wireless Earbuds" with
labels such as "Electronics > Audio > Headphones > Bluetooth Earphones."
Flipkart: Classifies a customer review like "Great camera but poor battery
life" into sentiment labels such as "Positive (Camera)" and "Negative
(Battery)."
Google: Predicts YouTube video labels like "Tech Reviews," "Smartphones,"
and "Unboxing" for a video about the latest iPhone.



Multi-label classification extends traditional classification tasks by
allowing each data point to belong to multiple categories
simultaneously. For instance, in a movie recommendation system,
a single movie could be tagged with labels like comedy, drama, and
romance.

This is different from multi-class classification, where each data
point is associated with exactly one category from a set of mutually
exclusive classes (e.g., categorizing animals as dog, cat, or bird).

Unlike multi-class classification, where predictions are
independent, multi-label classification requires models to consider
the relationships among labels to improve accuracy and relevance.

Multi-Class vs Multi-Label
Classification



Transformer as a seq-to-seq
model for XMC
T5 treats all tasks as text-to-text problems, converting inputs (like product
descriptions) into outputs (like hierarchical labels). This makes it flexible for
tasks like XMC, where both input (product details) and output (labels) are
sequences.

The encoder processes the input sequence (e.g., a product description) to
extract meaningful representations.
The decoder generates the output sequence (e.g., hierarchical labels), one
token at a time, capturing label dependencies naturally.

Fine-Tuning for XMC:
T5 is pre-trained on massive datasets and fine-tuned for XMC by training it
to predict structured outputs, like "details_Brand: XYZ L0_category:
Electronics ..." given product details.



Implementing T5
Introduction to the Amazon dataset that we are working with
The Input Features are shown in Table 6.1 :

S. No. File_name Product_ID Title Price Store Manufacturer

1 Automotive B000C9FJ1Y GM 15-8535 Heating and Air Conditioning Blower... NaN GM
ACDelco

2 Electronics B075HRNB8K Polaroid PIF-300 Instant Film - Twin Pack NaN Polaroid
Polaroid

3 Automotive B07J9ZFLT8 CoolingCare Radiator for 1992-2004 Chevy GMC C... NaN Cooling Care Cooling Care

4 Electronics B086384SF5 RM-GD014 Remote Control Replacement for Sony ... 7.95 Elekpia Elekpia Factory

... ... ... ... ... ... ...

1680013
Home_and_Kitche

n
B004L8V95C Urnex Cafiza Espresso Machine Cleaning Tablets... 7.34 Urnex Urnex

1 GM (1934) Automotive (484633) Replacement Parts (253381)
Engine Cooling & Climate

Control (18199)
Heating (2081) Blower Motors (1718)

Output Required:



Prompt:

Your task is to extract specific product details from the given information.
You need to identify and extract the following categories from the text:
- Brand of the product
- Primary category (L0_category)
- Secondary category (L1_category)
- Tertiary category (L2_category)
- Quaternary category (L3_category)
- Quinary category (L4_category)

Input: 
<product details here>

Output: 
details_Brand: <brand> L0_category: <category_0> L1_category:
<category_1> L2_category: <category_2> L3_category: <category_3>
L4_category: <category_4>

The fine-tuning task was framed as a sequence-to-sequence problem using a
structured prompt. The model was provided with product-related information,
such as the file name, title, store, and manufacturer details, as input.



Results
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F1 scores

The high F1 score for Brand_category is attributed to its strong

correlation with the Manufacturer attribute in the input data.

The elevated F1 score observed in the L4 category suggests that the

model has predominantly learned to output "NA" for this label, rather

than demonstrating genuine classification accuracy.

Tail Labels are labels which have less than or equal to 25 training

samples in the dataset.



Tree and Embeddings based
approach

FastXML is a tree-based algorithm designed for extreme multi-label
classification.
It achieves high accuracy for tasks requiring fast predictions, such as
web searches or recommendation systems.
But tends to lose fine-grained label relationships due to its reliance on
hard partitioning and fixed tree structures.

SLEEC (Sparse Local Embeddings for Extreme Classification) is an
embedding-based approach that learns low-dimensional label
embeddings.
SLEEC is particularly accurate for datasets with intricate label
dependencies.
It struggles with scalability and computational efficiency as embedding
learning can be resource-intensive. Additionally, it lacks the
interpretability provided by tree-based classifiers like FastXML.



Hierarchical Embedding and Cluster
Search for XMC
(proposed)
To combine the strengths of FastXML and SLEEC, we propose a Tree-
Embedded Label Space, where labels are organized hierarchically, and
embeddings are learned for each level of the tree. The parameters and
approach for this setup are:

Parameters for Tree Embedding:1.

Embedding Dimensions: Root-level embeddings (L0) have the smallest
dimension, representing general labels (e.g., "movies"). As we move
deeper into the tree (L1, L2, ...), embedding dimensions increase,
allowing more specific labels (e.g., "horror") to be represented with
higher granularity.
Projection Matrices: Each parent node has a matrix that projects its
embeddings into the space of its child nodes.
Tree Structure: A predefined or learned tree hierarchy determines label
relationships. This can be data-driven, reflecting semantic or categorical
relationships.



2. Loss Function:
Prediction Loss: For each data point, predictions are made at every level
of the tree. The loss is computed as the sum of classification losses (e.g.,
cross-entropy) across all levels, weighted by the importance of each
level.
Consistency Loss: Child embeddings are learned as projections of
parent embeddings. A consistency loss ensures that embeddings at
different levels maintain hierarchical coherence.
Regularization Loss: To prevent overfitting, regularization terms
constrain embedding dimensionality and projection matrices.
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Schematic of Multi-Level Target Labels representation Schematic of Cluster Search on different dataset levels



In summary, the Tree-Embedded Label Space bridges the gap between
FastXML and SLEEC by introducing hierarchical interpretability and
embedding flexibility. (can also be embedded in hyperbolic space)

This hybrid approach could outperform both in tasks requiring high
precision, scalability, and the ability to capture complex label relationships.

This approach is supposed to bring the best of the above mentioned two
methods and perform better where they individually lagged.

Although this method is currently in the ideation phase, we would continue
doing more work on this and come up with a working model with promising
results and accuracies on several benchmarks.

We have been chosen for the poster presentation for our work in this field
at the IndoML Graduate Forum 2024 happpeening on 22nd December 2024.

Link to poster:

https://www.canva.com/design/DAGSTgh_5Qw/hxCgKoI4FXWAdlt6O_-
ONQ/edit?ui=eyJEIjp7IlAiOnsiQiI6ZmFsc2V9fX0
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